直线与椭圆位置关系(典范).doc
《直线与椭圆位置关系(典范).doc》由会员分享,可在线阅读,更多相关《直线与椭圆位置关系(典范).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、. .直线与椭圆(教师版)知识与归纳:1.点与椭圆的位置关系点P(x0,y0)在椭圆内部的充要条件是;在椭圆外部的充要条件是;在椭圆上的充要条件是.2.直线与椭圆的位置关系.设直线l:Ax+By+C=0,椭圆C:,联立l与C,消去某一变量(x或y)得到关于另一个变量的一元二次方程,此一元二次方程的判别式为,则l与C相离的0.3.弦长计算计算椭圆被直线截得的弦长,往往是设而不求,即设弦两端坐标为P1(x1,y1),P2(x2,y2)|P1P2|= (k为直线斜率)形式(利用根与系数关系(推导过程:若点在直线上,则,这是同点纵横坐标变换,是两大坐标变换技巧之一,或者。)一,直线与椭圆的位置关系例题
2、1、判断直线与椭圆的位置关系解:由可得 (1)当时,直线与椭圆相交(2)当时,直线与椭圆相切(3)当时,直线与椭圆相离例题2、若直线与椭圆恒有公共点,求实数的取值范围解法一:由可得,即解法二:直线恒过一定点当时,椭圆焦点在轴上,短半轴长,要使直线与椭圆恒有交点则即当时,椭圆焦点在轴上,长半轴长可保证直线与椭圆恒有交点即综述:解法三:直线恒过一定点要使直线与椭圆恒有交点,即要保证定点在椭圆内部即评述由直线方程与椭圆方程联立的方程组解的情况直接导致两曲线的交点状况,而方程解的情况由判别式来决定,直线与椭圆有相交、相切、相离三种关系,直线方程与椭圆方程联立,消去或得到关于或的一元二次方程,则(1)直
3、线与椭圆相交(2)直线与椭圆相切(3)直线与椭圆相离,所以判定直线与椭圆的位置关系,方程及其判别式是最基本的工具。或者可首先判断直线是否过定点,并且初定定点在椭圆内、外还是干脆就在椭圆上,然后借助曲线特征判断:如例2中法二是根据两曲线的特征观察所至;法三则紧抓定点在椭圆内部这一特征:点在椭圆内部或在椭圆上则二、弦长问题例3、已知椭圆的左右焦点分别为F1,F2,若过点P(0,-2)及F1的直线交椭圆于A,B两点,求ABF2的面积解法一:由题可知:直线方程为由可得,解法二:到直线AB的距离由可得,又评述在利用弦长公式(k为直线斜率)或焦(左)半径公式时,应结合韦达定理解决问题。例题4、 已知长轴为
4、12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长分析:可以利用弦长公式求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求解:(法1)利用直线与椭圆相交的弦长公式求解因为,所以因为焦点在轴上,所以椭圆方程为,左焦点,从而直线方程为由直线方程与椭圆方程联立得:设,为方程两根,所以, 从而(法2)利用椭圆的定义及余弦定理求解由题意可知椭圆方程为,设,则,在中,即;所以同理在中,用余弦定理得,所以一、求中点弦所在直线方程问题例1 过椭圆内一点M(2,1)引一条弦,使弦被点M平分,求这条弦所在的直线方程。解法一:设所求直线方程为y-1=k(x-2),代入
5、椭圆方程并整理得:又设直线与椭圆的交点为A(),B(),则是方程的两个根,于是,又M为AB的中点,所以,解得,故所求直线方程为。解法二:设直线与椭圆的交点为A(),B(),M(2,1)为AB的中点,所以,又A、B两点在椭圆上,则,两式相减得,所以,即,故所求直线方程为。解法三:设所求直线与椭圆的一个交点为A(),由于中点为M(2,1),则另一个交点为B(4-),因为A、B两点在椭圆上,所以有,两式相减得,由于过A、B的直线只有一条,故所求直线方程为。二、求弦中点的轨迹方程问题例2 过椭圆上一点P(-8,0)作直线交椭圆于Q点,求PQ中点的轨迹方程。解法一:设弦PQ中点M(),弦端点P(),Q(
6、),则有,两式相减得,又因为,所以,所以,而,故。化简可得 ()。解法二:设弦中点M(),Q(),由,可得,又因为Q在椭圆上,所以,即,所以PQ中点M的轨迹方程为 ()。三、弦中点的坐标问题例3 求直线被抛物线截得线段的中点坐标。解:解法一:设直线与抛物线交于, ,其中点,由题意得,消去y得,即,所以,即中点坐标为。解法二:设直线与抛物线交于, ,其中点,由题意得,两式相减得,所以,所以,即,即中点坐标为。例题5、已知是直线被椭圆所截得的线段的中点,求直线的方程分析:本题考查直线与椭圆的位置关系问题通常将直线方程与椭圆方程联立消去(或),得到关于(或)的一元二次方程,再由根与系数的关系,直接求
7、出,(或,)的值代入计算即得并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的解:方法一:设所求直线方程为代入椭圆方程,整理得 设直线与椭圆的交点为,则、是的两根,为中点,所求直线方程为方法二:设直线与椭圆交点,为中点,又,在椭圆上,两式相减得,即直线方程为方法三:设所求直线与椭圆的一个交点为,另一个交点、在椭圆上,。 从而,在方程的图形上,而过、的直线只有一条,直线方程为说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法若已知焦点是、的椭圆截直线所得弦中点的横坐标是4,则如何求椭圆方程?例题6、已知椭圆及直线(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 椭圆 位置 关系 典范
限制150内