函数单调性的判定方法(高级中学数学).doc
《函数单调性的判定方法(高级中学数学).doc》由会员分享,可在线阅读,更多相关《函数单调性的判定方法(高级中学数学).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,函数单调性的判定方法学生: 日期; 课时: 教师:1.判断具体函数单调性的方法1.1 定义法 一般地,设为定义在上的函数。若对任何、,当时,总有(1),则称为上的增函数,特别当成立严格不等时,称为上的严格增函数;(2),则称为上的减函数,特别当成立严格不等式时,称为上的严格减函数。 利用定义来证明函数在给定区间上的单调性的一般步骤:(1)设元,任取,且;(2)作差;(3)变形(普遍是因式分解和配方);(4)断号(即判断差与0的大小);(5)定论(即指出函数 在给定的区间D上的单调性)。例1.用定义证明在上是减函数。证明:设,,且,则由于,则,即,所以在上是减函数。例2.用定义证明函数 在上的
2、单调性。证明:设、,且,则,又 所以,当、时,此时函数为减函数;当、时,此时函数为增函数。综上函数 在区间内为减函数;在区间内为增函数。此题函数是一种特殊函数(对号函数),用定义法证明时通常需要进行因式分解,由于与0的大小关系不是明确的,因此要分段讨论。 用定义法判定函数单调性比较适用于那种对于定义域内任意两个数当时,容易得出与大小关系的函数。在解决问题时,定义法是最直接的方法,也是我们首先考虑的方法,虽说这种方法思路比较清晰,但通常过程比较繁琐。1.2 函数性质法函数性质法是用单调函数的性质来判断函数单调性的方法。函数性质法通常与我们常见的简单函数的单调性结合起来使用。对于一些常见的简单函数
3、的单调性如下表:函数函数表达式单调区间特殊函数图像一次函数当时,在R上是增函数;当时,在R上是减函数。二次函数当时,时单调减,时单调增;当时,时单调增,时单调减。反比例函数且当时,在时单调减,在时单调减;当时,在时单调增,在时单调增。指数函数当时,在R上是增函数;当,时在R上是减函数。对数函数 当时,在上是增函数;当时,在上是减函数。一些常用的关于函数单调的性质可总结如下几个结论:与+单调性相同。(为常数)当时,与具有相同的单调性;当时, 与具有相反的单调性。当恒不等于零时,与具有相反的单调性。当、在上都是增(减)函数时,则在上是增(减)函数。当、在上都是增(减)函数且两者都恒大于0时,在上是
4、增(减)函数;当、在上都是增(减)函数且两者都恒小于0时,在上是减(增)函数。设,为严格增(减)函数,则必有反函数,且在其定义域上也是严格增(减)函数。例3.判断的单调性。解:函数的定义域为,由简单函数的单调性知在此定义域内 均为增函数,因为,由性质可得也是增函数;由单调函数的性质知为增函数,再由性质知函数+5在为单调递增函数。例4.设函数,判断在其定义域上的单调性。 解:函数的定义域为.先判断在内的单调性,由题可把转化为,又故由性质可得为减函数;由性质可得为减函数;再由性质可得在内是减函数。同理可判断在内也是减函数。故函数在内是减函数。函数性质法只能借助于我们熟悉的单调函数去判断一些函数的单
5、调性,因此首先把函数等价地转化成我们熟悉的单调函数的四则混合运算的形式,然后利用函数单调性的性质去判断,但有些函数不能化成简单单调函数四则混合运算形式就不能采用这种方法。1.3 图像法 用函数图像来判断函数单调性的方法叫图像法。根据单调函数的图像特征,若函数的图像在区间上从左往右逐渐上升则函数在区间上是增函数;若函数图像在区间上从左往右逐渐下降则函数在区间上是减函数。、例5. 如图1-1是定义在闭区间-5,5上的函数的图像,试判断其单调性。解:由图像可知:函数的单调区间有-5,-2),-2,1),1,3),3,5).其中函数在区间-5,-2),1,3)上的图像是从左往右逐渐下降的,则函数在区间
6、-5,-2),1,3)为减函数;函数在区间-2,1),3,5上的图像是从往右逐渐上升的,则函数在区间-2,1),3,5上是增函数。 例6.利用函数图像判断函数;在-3,3上的单调性。分析:观察三个函数,易见,作图一般步骤为列表、描点、作图。首先作出和的图像,再利用物理学上波的叠加就可以大致作出的图像,最后利用图像判断函数的单调性。解:作图像1-2如下所示:由以上函数图像得知函数在闭区间-3,3上是单调增函数;在闭区间-3,3上是单调增函数;利用物理上波的叠加可以直接大致作出在闭区间-3,3上图像,即在闭区间-3,3上是单调增函数。事实上本题中的三个函数也可以直接用函数性质法判断其单调性。 用函
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 调性 判定 方法 高级 中学数学
限制150内