排序算法实验报告.doc
《排序算法实验报告.doc》由会员分享,可在线阅读,更多相关《排序算法实验报告.doc(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,数据结构实验报告八种排序算法实验报告一、 实验内容编写关于八种排序算法的C语言程序,要求包含直接插入排序、希尔排序、简单选择排序、堆排序、冒泡排序、快速排序、归并排序和基数排序。二、 实验步骤 各种内部排序算法的比较:1. 八种排序算法的复杂度分析(时间与空间)。2. 八种排序算法的C语言编程实现。3. 八种排序算法的比较,包括比较次数、移动次数。三、 稳定性,时间复杂度和空间复杂度分析比较时间复杂度函数的情况:时间复杂度函数O(n)的增长情况所以对n较大的排序记录。一般的选择都是时间复杂度为O(nlog2n)的排序方法。时间复杂度来说:(1)平方阶(O(n2)排序 各类简单排序:直接插入、
2、直接选择和冒泡排序; (2)线性对数阶(O(nlog2n)排序 快速排序、堆排序和归并排序; (3)O(n1+)排序,是介于0和1之间的常数。 希尔排序(4)线性阶(O(n)排序 基数排序,此外还有桶、箱排序。说明:当原表有序或基本有序时,直接插入排序和冒泡排序将大大减少比较次数和移动记录的次数,时间复杂度可降至O(n);而快速排序则相反,当原表基本有序时,将蜕化为冒泡排序,时间复杂度提高为O(n2);原表是否有序,对简单选择排序、堆排序、归并排序和基数排序的时间复杂度影响不大。稳定性:排序算法的稳定性:若待排序的序列中,存在多个具有相同关键字的记录,经过排序, 这些记录的相对次序保持不变,则
3、称该算法是稳定的;若经排序后,记录的相对 次序发生了改变,则称该算法是不稳定的。稳定性的好处:排序算法如果是稳定的,那么从一个键上排序,然后再从另一个键上排序,第一个键排序的结果可以为第二个键排序所用。基数排序就是这样,先按低位排序,逐次按高位排序,低位相同的元素其顺序再高位也相同时是不会改变的。另外,如果排序算法稳定,可以避免多余的比较;稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序四、 设计细节排序有内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需
4、要访问外存。我们这里说说八大排序就是内部排序。1. 插入排序-直接插入排序(Straight lnsertion Sort)基本思想: 将一个记录插入到已排序好的有序表中,从而得到一个新,记录数增1的有序表。即:先将序列的第1个记录看成是一个有序的子序列,然后从第2个记录逐个进行插入,直至整个序列有序为止。要点:设立哨兵,作为临时存储和判断数组边界之用。直接插入排序示例:如果碰见一个和插入元素相等的,那么插入元素把想插入的元素放在相等元素的后面。所以,相等元素的前后顺序没有改变,从原无序序列出去的顺序就是排好序后的顺序,所以插入排序是稳定的。时效分析:时间复杂度:O(n2)2. 插入排序希尔排
5、序(Shells Sort)希尔排序是1959 年由D.L.Shell 提出来的,相对直接排序有较大的改进。希尔排序又叫缩小增量排序基本思想:先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,待整个序列中的记录“基本有序”时,再对全体记录进行依次直接插入排序。操作方法:1. 选择一个增量序列t1,t2,tk,其中titj,tk=1;2. 按增量序列个数k,对序列进行k 趟排序;3. 每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。希尔排序的示例:算法的实现:
6、我们简单处理增量序列:增量序列d = n/2 ,n/4, n/8 .1n为要排序数的个数即:先将要排序的一组记录按某个增量d(n/2,n为要排序数的个数)分成若干组子序列,每组中记录的下标相差d.对每组中全部元素进行直接插入排序,然后再用一个较小的增量(d/2)对它进行分组,在每组中再进行直接插入排序。继续不断缩小增量直至为1,最后使用直接插入排序完成排序。时效分析:希尔排序时效分析很难,关键码的比较次数与记录移动次数依赖于增量因子序列d的选取,特定情况下可以准确估算出关键码的比较次数和记录的移动次数。目前还没有人给出选取最好的增量因子序列的方法。增量因子序列可以有各种取法,有取奇数的,也有取
7、质数的,但需要注意:增量因子中除1 外没有公因子,且最后一个增量因子必须为1。希尔排序方法是一个不稳定的排序方法。3. 选择排序简单选择排序(Simple Selection Sort)基本思想:在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换;然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素(最后一个数)比较为止。简单选择排序的示例:操作方法:第一趟,从n 个记录中找出关键码最小的记录与第一个记录交换;第二趟,从第二个记录开始的n-1 个记录中再选出关键码最小的记录与第二个记录交换;以此类推.第i 趟,
8、则从第i 个记录开始的n-i+1 个记录中选出关键码最小的记录与第i 个记录交换,直到整个序列按关键码有序。4. 选择排序堆排序(Heap Sort)堆排序是一种树形选择排序,是对直接选择排序的有效改进。基本思想:堆的定义如下:具有n个元素的序列(k1,k2,.,kn),当且仅当满足时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)。若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。如:(a)大顶堆序列:(96, 83,27,38,11,09) (b) 小顶堆序列:(12,36,
9、24,85,47,30,53,91)初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大)的元素。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序。因此,实现堆排序需解决两个问题:1. 如何将n 个待排序的数建成堆;2. 输出堆顶元素后,怎样调整剩余n-1 个元素,使其成为一个新堆。首先讨论第二个问题:输出堆顶元
10、素后,对剩余n-1元素重新建成堆的调整过程。调整小顶堆的方法:1)设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶(最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。2)将根结点与左、右子树中较小元素的进行交换。3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法 (2).4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法 (2).5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。称这个自根结点到叶子结点的调整过程为筛选。如图:再讨论对n 个元素初始建堆的过程。建堆
11、方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。1)n 个结点的完全二叉树,则最后一个结点是第个结点的子树。2)筛选从第个结点为根的子树开始,该子树成为堆。3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。如图建堆初始过程:无序序列:(49,38,65,97,76,13,27,49)算法的实现:从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。时效分析:设树深度为k,。从根到叶的筛选,元素比较次数至多2(k-1)次,交换记录至多k 次。所以,在建好堆后,
12、排序过程中的筛选次数不超过下式:而建堆时的比较次数不超过4n 次,因此堆排序最坏情况下,时间复杂度也为:O(nlogn )。5. 交换排序冒泡排序(Bubble Sort)基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。冒泡排序的示例:6. 交换排序快速排序(Quick Sort)基本思想:1)选择一个基准元素,通常选择第一个元素或者最后一个元素,2)通过一趟排序讲待排序的记录分割成独立的两部分,其中一部分记录的元素值均比基准元素值小。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排序 算法 实验 报告
限制150内