求数列通项定律的十种方法例题目解析详解.doc
《求数列通项定律的十种方法例题目解析详解.doc》由会员分享,可在线阅读,更多相关《求数列通项定律的十种方法例题目解析详解.doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。 三 求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。 四求数列通项的基本方法是:累加法和累乘法。 五数列的本质是一个函
2、数,其定义域是自然数集的一个函数。一、累加法 1适用于: -这是广义的等差数列 累加法是最基本的二个方法之一。2若,则 两边分别相加得 例1 已知数列满足,求数列的通项公式。解:由得则所以数列的通项公式为。例2 已知数列满足,求数列的通项公式。解法一:由得则所以解法二:两边除以,得,则,故因此,则评注:已知,,其中f(n)可以是关于n的一次函数、二次函数、指数函数、分式函数,求通项.若f(n)是关于n的一次函数,累加后可转化为等差数列求和;若f(n)是关于n的二次函数,累加后可分组求和;若f(n)是关于n的指数函数,累加后可转化为等比数列求和;若f(n)是关于n的分式函数,累加后可裂项求和。例
3、3.已知数列中, 且,求数列的通项公式.解:由已知得,化简有,由类型(1)有,又得,所以,又,则此题也可以用数学归纳法来求解.二、累乘法 1.。 -适用于: -这是广义的等比数列累乘法是最基本的二个方法之二。2若,则两边分别相乘得,例4 已知数列满足,求数列的通项公式。解:因为,所以,则,故所以数列的通项公式为例5.设是首项为1的正项数列,且(=1,2, 3,),则它的通项公式是=_.解:已知等式可化为:()(n+1), 即时,=.评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到与的更为明显的关系式,从而求出.练习.已知,求数列an的通项公式.答案:-1.评注:本题
4、解题的关键是把原来的递推关系式转化为若令,则问题进一步转化为形式,进而应用累乘法求出数列的通项公式.三、待定系数法 适用于 基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。1形如,其中)型(1)若c=1时,数列为等差数列;(2)若d=0时,数列为等比数列;(3)若时,数列为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设,得,与题设比较系数得,所以所以有:因此数列构成以为首项,以c为公比的等比数列,所以 即:.规律:将递推关系化为,构造成公比为c的等比数列从而求得通项公式逐项相减法(阶差法):有时我们从递推关系中把n换成n-1有,两
5、式相减有从而化为公比为c的等比数列,进而求得通项公式. ,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.例6已知数列中,求数列的通项公式。解法一: 又是首项为2,公比为2的等比数列 ,即解法二: 两式相减得,故数列是首项为2,公比为2的等比数列,再用累加法的练习已知数列中,求通项。答案:2形如: (其中q是常数,且n0,1) 若p=1时,即:,累加即可.若时,即:,求通项方法有以下三种方向:i. 两边同除以.目的是把所求数列构造成等差数列即: ,令,则,然后类型1,累加求通项.ii.两边同除以 . 目的是把所求数列构造成等差数列。 即: ,令,则可化为.然后转化为类型5来解,iii
6、.待定系数法:目的是把所求数列构造成等差数列设.通过比较系数,求出,转化为等比数列求通项.注意:应用待定系数法时,要求pq,否则待定系数法会失效。例7已知数列满足,求数列的通项公式。解法一(待定系数法):设,比较系数得,则数列是首项为,公比为2的等比数列,所以,即解法二(两边同除以): 两边同时除以得:,下面解法略解法三(两边同除以): 两边同时除以得:,下面解法略3形如 (其中k,b是常数,且)方法1:逐项相减法(阶差法)方法2:待定系数法通过凑配可转化为 ; 解题基本步骤:1、确定=kn+b2、设等比数列,公比为p3、列出关系式,即4、比较系数求x,y5、解得数列的通项公式6、解得数列的通
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 定律 十种方 法例 题目 解析 详解
限制150内