数值分析题目整合及答案解析.doc
《数值分析题目整合及答案解析.doc》由会员分享,可在线阅读,更多相关《数值分析题目整合及答案解析.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,模 拟 试 卷(一)一、填空题(每小题3分,共30分)1有3个不同节点的高斯求积公式的代数精度是 次的.2设,则= .,= _.3已知y=f(x)的均差(差商),, 那么均差= .4已知n=4时NewtonCotes求积公式的系数分别是:则 .5解初始值问题的改进的Euler方法是 阶方法;6求解线性代数方程组的高斯塞德尔迭代公式为 , 若取, 则 .7求方程根的牛顿迭代格式是 .8是以整数点为节点的Lagrange插值基函数,则= .9解方程组的简单迭代格式收敛的充要条件是 .10设,则的三次牛顿插值多项式为 ,其误差估计式为 .二、综合题(每题10分,共60分)1求一次数不超过4次的多项
2、式满足:,.2构造代数精度最高的形式为的求积公式,并求出其代数精度. 3用Newton法求方程在区间内的根, 要求.4用最小二乘法求形如的经验公式拟合以下数据:1925303819.032.349.073.35用矩阵的直接三角分解法解方程组.6 试用数值积分法建立求解初值问题的如下数值求解公式,其中.三、证明题(10分)设对任意的,函数的导数都存在且,对于满足的任意,迭代格式均收敛于的根.参考答案一、填空题15; 2. 8, 9 ; 3. ; 4. ; 5. 二; 6. , (0.02,0.22,0.1543)7. ; 8. ; 9. ; 10. 二、综合题1差商表:1112215151557
3、5720204272152230781其他方法:设令,求出a和b.2取,令公式准确成立,得:, , , .时,公式左右;时,公式左, 公式右 公式的代数精度.3此方程在区间内只有一个根,而且在区间(2,4)内。设则, ,Newton法迭代公式为, 取,得。4 ,.解方程组,其中 , 解得: 所以, . 5解 设 由矩阵乘法可求出和 解下三角方程组 有,.再解上三角方程组 得原方程组的解为,.6 解 初值问题等价于如下形式,取,有,利用辛卜森求积公式可得.三、证明题证明 将写成,由于 ,所以所以迭代格式均收敛于的根.模 拟 试 卷(二)一、填空题(每小题3分,共30分)1分别用2.718281和
4、2.718282作数的近似值,则其有效位数分别有 位和 位 ;2 设,则= _,= .3对于方程组, Jacobi迭代法的迭代矩阵是=_.4设,则差商=_,=_.5已知, 则条件数_.6为使两点的数值求积公式具有最高的代数精确度,则其求积基点应为=_, =_7解初始值问题近似解的梯形公式是 8求方程根的弦截法迭代公式是 9. 计算积分,取4位有效数字,用梯形公式计算求得的近似值是 , 用辛卜生公式计算的结果是 10任一非奇异矩阵的条件数 ,其一定大于等于 二、综合题(每题10分,共60分)1 证明方程在区间有且只有一个根,若利用二分法求其误差不超过近似解,问要迭代多少次?2 已知常微分方程的初
5、值问题:试用改进的Euler方法计算的近似值,取步长.3 用矩阵的分解法解方程组 .4 用最小二乘法求一个形如的经验公式,使它与下列数据拟合.x1.01.41.82.22.6y0.9310.4730.2970.2240.1685 设方程组,试考察解此方程组的雅可比迭代法及高斯赛德尔迭代法的收敛性。6 按幂法求矩阵的按模最大特征值的近似值,取初始向量,迭代两步求得近似值即可.三、证明题(10分)已知求的迭代公式为: 证明:对一切 , 且序列是单调递减的,从而迭代过程收敛.参考答案一、填空题16, 7; 2. 9, ; 3 . ; 4. 1, 0; 5. 9; 6. , ; 7. ;8. ; 9.
6、 0.4268, 0.4309; 10. , 1二、综合题1 解 令,则,且 故在区间内仅有一个根. 利用二分法求它的误差不超过的近似解,则 解此不等式可得 所以迭代14次即可.2、解: 3 解 设 利用矩阵乘法可求得, ,解方程组 得,再解方程组 得.4 解 令,则容易得出正规方程组,解得 .故所求经验公式为 . 5 解 (1)由于,所以在内有根且,故利用雅可比迭代法不收敛.(2)由于所以,故利用高斯赛德尔迭代法收敛.6 解 因为,故,且,.从而得,.三、证明题 证明: 由于 故对一切,又所以 ,即序列是单调递减有下界,从而迭代过程收敛.模 拟 试 卷(三)一、填空题(每小题3分,共30分)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数值 分析 题目 整合 答案 解析
限制150内