初学(支持向量机SVM).doc
《初学(支持向量机SVM).doc》由会员分享,可在线阅读,更多相关《初学(支持向量机SVM).doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,支持向量机SVM(一) 1 简介支持向量机基本上是最好的有监督学习算法了。最开始接触SVM是去年暑假的时候,老师要求交统计学习理论的报告,那时去网上下了一份入门教程,里面讲的很通俗,当时只是大致了解了一些相关概念。这次斯坦福提供的学习材料,让我重新学习了一些SVM知识。我看很多正统的讲法都是从VC 维理论和结构风险最小原理出发,然后引出SVM什么的,还有些资料上来就讲分类超平面什么的。这份材料从前几节讲的logistic回归出发,引出了SVM,既揭示了模型间的联系,也让人觉得过渡更自然。 2 重新审视logistic回归Logistic回归目的是从特征学习出一个0/1分类模型,而这个模型是将
2、特性的线性组合作为自变量,由于自变量的取值范围是负无穷到正无穷。因此,使用logistic函数(或称作sigmoid函数)将自变量映射到(0,1)上,映射后的值被认为是属于y=1的概率。 形式化表示就是 假设函数 其中x是n维特征向量,函数g就是logistic函数。 的图像是 可以看到,将无穷映射到了(0,1)。 而假设函数就是特征属于y=1的概率。 当我们要判别一个新来的特征属于哪个类时,只需求,若大于0.5就是y=1的类,反之属于y=0类。 再审视一下,发现只和有关,0,那么,g(z)只不过是用来映射,真实的类别决定权还在。还有当时,=1,反之=0。如果我们只从出发,希望模型达到的目标无
3、非就是让训练数据中y=1的特征,而是y=0的特征。Logistic回归就是要学习得到,使得正例的特征远大于0,负例的特征远小于0,强调在全部训练实例上达到这个目标。 图形化表示如下: 中间那条线是,logistic回顾强调所有点尽可能地远离中间那条线。学习出的结果也就中间那条线。考虑上面3个点A、B和C。从图中我们可以确定A是类别的,然而C我们是不太确定的,B还算能够确定。这样我们可以得出结论,我们更应该关心靠近中间分割线的点,让他们尽可能地远离中间线,而不是在所有点上达到最优。因为那样的话,要使得一部分点靠近中间线来换取另外一部分点更加远离中间线。我想这就是支持向量机的思路和logistic
4、回归的不同点,一个考虑局部(不关心已经确定远离的点),一个考虑全局(已经远离的点可能通过调整中间线使其能够更加远离)。这是我的个人直观理解。 3 形式化表示我们这次使用的结果标签是y=-1,y=1,替换在logistic回归中使用的y=0和y=1。同时将替换成w和b。以前的,其中认为。现在我们替换为b,后面替换为(即)。这样,我们让,进一步。也就是说除了y由y=0变为y=-1,只是标记不同外,与logistic回归的形式化表示没区别。再明确下假设函数 上一节提到过我们只需考虑的正负问题,而不用关心g(z),因此我们这里将g(z)做一个简化,将其简单映射到y=-1和y=1上。映射关系如下: 4
5、函数间隔(functional margin)和几何间隔(geometric margin)给定一个训练样本,x是特征,y是结果标签。i表示第i个样本。我们定义函数间隔如下: 可想而知,当时,在我们的g(z)定义中,的值实际上就是。反之亦然。为了使函数间隔最大(更大的信心确定该例是正例还是反例),当时,应该是个大正数,反之是个大负数。因此函数间隔代表了我们认为特征是正例还是反例的确信度。 继续考虑w和b,如果同时加大w和b,比如在前面乘个系数比如2,那么所有点的函数间隔都会增大二倍,这个对求解问题来说不应该有影响,因为我们要求解的是,同时扩大w和b对结果是无影响的。这样,我们为了限制w和b,可
6、能需要加入归一化条件,毕竟求解的目标是确定唯一一个w和b,而不是多组线性相关的向量。这个归一化一会再考虑。 刚刚我们定义的函数间隔是针对某一个样本的,现在我们定义全局样本上的函数间隔 说白了就是在训练样本上分类正例和负例确信度最小那个函数间隔。 接下来定义几何间隔,先看图 假设我们有了B点所在的分割面。任何其他一点,比如A到该面的距离以表示,假设B就是A在分割面上的投影。我们知道向量BA的方向是(分割面的梯度),单位向量是。A点是,所以B点是x=(利用初中的几何知识),带入得, 进一步得到 实际上就是点到平面距离。 再换种更加优雅的写法: 当时,不就是函数间隔吗?是的,前面提到的函数间隔归一化
7、结果就是几何间隔。他们为什么会一样呢?因为函数间隔是我们定义的,在定义的时候就有几何间隔的色彩。同样,同时扩大w和b,w扩大几倍,就扩大几倍,结果无影响。同样定义全局的几何间隔 5 最优间隔分类器(optimal margin classifier)回想前面我们提到我们的目标是寻找一个超平面,使得离超平面比较近的点能有更大的间距。也就是我们不考虑所有的点都必须远离超平面,我们关心求得的超平面能够让所有点中离它最近的点具有最大间距。形象的说,我们将上面的图看作是一张纸,我们要找一条折线,按照这条折线折叠后,离折线最近的点的间距比其他折线都要大。形式化表示为: 这里用=1规约w,使得是几何间隔。
8、到此,我们已经将模型定义出来了。如果求得了w和b,那么来一个特征x,我们就能够分类了,称为最优间隔分类器。接下的问题就是如何求解w和b的问题了。 由于不是凸函数,我们想先处理转化一下,考虑几何间隔和函数间隔的关系,我们改写一下上面的式子: 这时候其实我们求的最大值仍然是几何间隔,只不过此时的w不受的约束了。然而这个时候目标函数仍然不是凸函数,没法直接代入优化软件里计算。我们还要改写。前面说到同时扩大w和b对结果没有影响,但我们最后要求的仍然是w和b的确定值,不是他们的一组倍数值,因此,我们需要对做一些限制,以保证我们解是唯一的。这里为了简便我们取。这样的意义是将全局的函数间隔定义为1,也即是将
9、离超平面最近的点的距离定义为。由于求的最大值相当于求的最小值,因此改写后结果为: 这下好了,只有线性约束了,而且是个典型的二次规划问题(目标函数是自变量的二次函数)。代入优化软件可解。 到这里发现,这个讲义虽然没有像其他讲义一样先画好图,画好分类超平面,在图上标示出间隔那么直观,但每一步推导有理有据,依靠思路的流畅性来推导出目标函数和约束。 接下来介绍的是手工求解的方法了,一种更优的求解方法。支持向量机SVM(二) 6 拉格朗日对偶(Lagrange duality) 先抛开上面的二次规划问题,先来看看存在等式约束的极值问题求法,比如下面的最优化问题: 目标函数是f(w),下面是等式约束。通常
10、解法是引入拉格朗日算子,这里使用来表示算子,得到拉格朗日公式为 L是等式约束的个数。 然后分别对w和求偏导,使得偏导数等于0,然后解出w和。至于为什么引入拉格朗日算子可以求出极值,原因是f(w)的dw变化方向受其他不等式的约束,dw的变化方向与f(w)的梯度垂直时才能获得极值,而且在极值处,f(w)的梯度与其他等式梯度的线性组合平行,因此他们之间存在线性关系。(参考最优化与KKT条件) 然后我们探讨有不等式约束的极值问题求法,问题如下: 我们定义一般化的拉格朗日公式 这里的和都是拉格朗日算子。如果按这个公式求解,会出现问题,因为我们求解的是最小值,而这里的已经不是0了,我们可以将调整成很大的正
11、值,来使最后的函数结果是负无穷。因此我们需要排除这种情况,我们定义下面的函数: 这里的P代表primal。假设或者,那么我们总是可以调整和来使得有最大值为正无穷。而只有g和h满足约束时,为f(w)。这个函数的精妙之处在于,而且求极大值。 因此我们可以写作 这样我们原来要求的min f(w)可以转换成求了。 我们使用来表示。如果直接求解,首先面对的是两个参数,而也是不等式约束,然后再在w上求最小值。这个过程不容易做,那么怎么办呢? 我们先考虑另外一个问题 D的意思是对偶,将问题转化为先求拉格朗日关于w的最小值,将和看作是固定值。之后在求最大值的话: 这个问题是原问题的对偶问题,相对于原问题只是更
12、换了min和max的顺序,而一般更换顺序的结果是Max Min(X) 核函数矩阵K是对称半正定的。 可幸的是,这个条件也是充分的,由Mercer定理来表达。 Mercer定理: 如果函数K是上的映射(也就是从两个n维向量映射到实数域)。那么如果K是一个有效核函数(也称为Mercer核函数),那么当且仅当对于训练样例,其相应的核函数矩阵是对称半正定的。Mercer定理表明为了证明K是有效的核函数,那么我们不用去寻找,而只需要在训练集上求出各个,然后判断矩阵K是否是半正定(使用左上角主子式大于等于零等方法)即可。 许多其他的教科书在Mercer定理证明过程中使用了范数和再生希尔伯特空间等概念,但在
13、特征是n维的情况下,这里给出的证明是等价的。 核函数不仅仅用在SVM上,但凡在一个模型后算法中出现了,我们都可以常使用去替换,这可能能够很好地改善我们的算法。支持向量机(四) 9 规则化和不可分情况处理(Regularization and the non-separable case) 我们之前讨论的情况都是建立在样例线性可分的假设上,当样例线性不可分时,我们可以尝试使用核函数来将特征映射到高维,这样很可能就可分了。然而,映射后我们也不能100%保证可分。那怎么办呢,我们需要将模型进行调整,以保证在不可分的情况下,也能够尽可能地找出分隔超平面。 看下面两张图: 可以看到一个离群点(可能是噪声
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初学 支持 向量 SVM
限制150内