法向量解立体几何收集训练.doc
《法向量解立体几何收集训练.doc》由会员分享,可在线阅读,更多相关《法向量解立体几何收集训练.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,法向量解立体几何专题训练一、运用法向量求空间角1、向量法求空间两条异面直线a, b所成角,只要在两条异面直线a, b上各任取一个向量,则角=或-,因为是锐角,所以cos=, 不需要用法向量。2、设平面的法向量为=(x, y, 1),则直线AB和平面所成的角的正弦值为sin= cos(-) = |cos| = 3、 设二面角的两个面的法向量为,则或-是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定是所求,还是-是所求角。二、运用法向量求空间距离1、求两条异面直线间的距离设异面直线a、b的公共法向量为,在a、b上任取一点 A、B,则异面直线a、b的距离d =ABcosBAA=2、求点到
2、面的距离求A点到平面的距离,设平面的法向量法为,在内任取一点B,则A点到平面的距离为d =,的坐标由与平面内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY平面平行,此时可改设三、证明线面、面面的平行、垂直关系设平面外的直线a和平面、,两个面、的法向量为,则 四、应用举例:例1:如右下图,在长方体ABCDA1B1C1D1中,已知AB= 4, AD =3, AA1= 2. E、F分别是线段AB、BC上的点,且EB= FB=1.(1) 求二面角CDEC1的正切值;(2) 求直线EC1与FD1所成的余弦值. 解:(I)以A为原点,分别为x轴,y轴,z轴的正向建
3、立空间直角坐标系,则D(0,3,0)、D1(0,3,2)、E(3,0,0)、F(4,1,0)、C1(4,3,2)于是,设法向量与平面C1DE垂直,则有(II)设EC1与FD1所成角为,则例2:(高考辽宁卷17)如图,已知四棱锥P-ABCD,底面ABCD是菱形,DAB=600,PD平面ABCD,PD=AD,点E为AB中点,点F为PD中点。(1)证明平面PED平面PAB; (2)求二面角P-AB-F的平面角的余弦值证明:(1)面ABCD是菱形,DAB=600,ABD是等边三角形,又E是AB中点,连结BD EDB=300,BDC=600,EDC=900,如图建立坐标系D-ECP,设AD=AB=1,则
4、PF=FD=,ED=,P(0,0,1),E(,0,0),B(,0) =(,-1),= (,0,-1),平面PED的一个法向量为=(0,1,0) ,设平面PAB的法向量为=(x, y, 1)由 =(, 0, 1)=0 即 平面PED平面PAB(2)解:由(1)知:平面PAB的法向量为=(, 0, 1), 设平面FAB的法向量为1=(x, y, -1),由(1)知:F(0,0,),=(,-), = (,0,-),由 1=(-, 0, -1)二面角P-AB-F的平面角的余弦值cos= |cos| =例3:在棱长为4的正方体ABCD-A1B1C1D1中,O是正方形A1B1C1D1的中心,点P在棱CC1
5、上,且CC1=4CP.()求直线AP与平面BCC1B1所成的角的大小(结果用反三角函数值表示);()设O点在平面D1AP上的射影是H,求证:D1HAP;()求点P到平面ABD1的距离.解: ()如图建立坐标系D-ACD1, 棱长为4 A(4,0,0),B(4,4,0),P(0,4,1) = (-4, 4, 1) , 显然=(0,4,0)为平面BCC1B1的一个法向量,直线AP与平面BCC1B1所成的角的正弦值sin= |cos|=为锐角,直线AP与平面BCC1B1所成的角为arcsin() 设平面ABD1的法向量为=(x, y, 1),=(0,4,0),=(-4,0,4)由, 得 =(1, 0
6、, 1), 点P到平面ABD1的距离 d = 例4:在长、宽、高分别为2,2,3的长方体ABCD-A1B1C1D1中,O是底面中心,求A1O与B1C的距离。解:如图,建立坐标系D-ACD1,则O(1,1,0),A1(2,2,3),C(0,2,0) 设A1O与B1C的公共法向量为,则 A1O与B1C的距离为 d =例5:在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别是B1C1、C1D1的中点,求A1到面BDFE的距离。解:如图,建立坐标系D-ACD1,则B(1,1,0),A1(1,0,1),E(,1,1) 设面BDFE的法向量为,则 A1到面BDFE的距离为d =新课标高二数学空间向
7、量与立体几何测试题1一、选择题1在正三棱柱ABCA1B1C1中,若ABBB1,则AB1与C1B所成的角的大小为( )图A60B90C105D752如图,ABCDA1B1C1D1是正方体,B1E1D1F1,则BE1与DF1所成角的余弦值是( )A B图CD3如图,A1B1C1ABC是直三棱柱,BCA=90,点D1、F1分别是A1B1、A1C1的中点,若BC=CA=CC1,则BD1与AF1所成角的余弦值是( )ABCD4正四棱锥的高,底边长,则异面直线和之间的距离( )A BC DAA1DCBB1C1图5已知是各条棱长均等于的正三棱柱,是侧棱的中点点到平面的距离( )A B C D6在棱长为的正方
8、体中,则平面与平面间的距离( )A BC D7在三棱锥PABC中,ABBC,ABBCPA,点O、D分别是AC、PC的中点,OP底面ABC,则直线OD与平面PBC所成角的正弦值( )A B C D8在直三棱柱中,底面是等腰直角三角形,侧棱,D,E分别是与的中点,点E在平面ABD上的射影是的重心G则与平面ABD所成角的余弦值( )A B CD9正三棱柱的底面边长为3,侧棱,D是CB延长线上一点,且,则二面角的大小( )A B C D10正四棱柱中,底面边长为,侧棱长为4,E,F分别为棱AB,CD的中点,则三棱锥的体积V( )A B C D二、填空题11在正方体中,为的中点,则异面直线和间的距离 1
9、2 在棱长为的正方体中,、分别是、的中点,求点到截面的距离 13已知棱长为1的正方体ABCDA1B1C1D1中,E、F分别是B1C1和C1D1的中点,点A1到平面DBEF的距离 14已知棱长为1的正方体ABCDA1B1C1D1中,E是A1B1的中点,求直线AE与平面ABC1D1所成角的正弦值 三、解答题15已知棱长为1的正方体ABCDA1B1C1D1,求平面A1BC1与平面ABCD所成的二面角的大小16已知棱长为1的正方体ABCDA1B1C1D1中,E、F、M分别是A1C1、A1D和B1A上任一点,求证:平面A1EF平面B1MC17在四棱锥PABCD中,底面ABCD是一直角梯形,BAD=90,
10、ADBC,AB=BC=a,AD=2a,且PA底面ABCD,PD与底面成30角(1)若AEPD,E为垂足,求证:BEPD;(2)求异面直线AE与CD所成角的余弦值18已知棱长为1的正方体AC1,E、F分别是B1C1、C1D的中点(1)求证:E、F、D、B共面;(2)求点A1到平面的BDEF的距离;(3)求直线A1D与平面BDEF所成的角19已知正方体ABCDA1B1C1D1的棱长为2,点E为棱AB的中点,求:()D1E与平面BC1D所成角的大小;()二面角DBC1C的大小;()异面直线B1D1与BC1之间的距离高二数学空间向量与立体几何专题训练2一、选择题1向量a(2x,1,3),b(1,2y,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 向量 立体几何 收集 训练
限制150内