硫酸盐对混凝土耐久性的影响.doc
《硫酸盐对混凝土耐久性的影响.doc》由会员分享,可在线阅读,更多相关《硫酸盐对混凝土耐久性的影响.doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,硫酸盐对混凝土耐久性的影响姓名:学号:内容摘要混凝土硫酸盐侵蚀,一直是混凝土耐久性研究中的重要组成部分,随着西部大开发的进行,对混凝土抗硫酸盐侵蚀的要求越来越迫切,虽然已经有许多检测方法、评定标准和模型,但到目前为止我国还没有一种方法能快速而真实的揭示混凝土硫酸侵蚀的机理。因此,对抗硫酸盐侵蚀试验方法进行全面深入的研究就显得非常迫切。本文简要介绍了对混凝土硫酸盐侵蚀问题的国内外的研究背景与研究现状,深入研究了硫酸盐作用下混凝土的侵蚀机理以及影响因素,介绍了实验室研究硫酸盐作用下混凝土耐久性的相关实验方法以及防止或减轻混凝土硫酸盐侵蚀的方法。关键词:混凝土 硫酸盐 耐久性 侵蚀机理 影响因素
2、实验方法 防治措施ABSTRACTThe concrete sulfate attack,has always been an important partinthe research of concrete durability. With the great development of Western China,therequirementsof sulfate corrosion resistanceof concreteis more andmore urgent. Although there have been many detection methods, evaluatio
3、n criteria and model, but so farChina hasnt founda method which canquickly andtrulyreveal the mechanism of sulfateattack on concrete. Therefore, sulfate resistance test method for comprehensive and in-depth research is very urgent. This paper briefly introduces the background and the status of the r
4、esearch at home and abroad of concrete sulfate attack, in-depth studies corrosion mechanism of concrete and influence factors under the action of the sulfate, introduces the experimental method of durability of concrete under the action of sulfate and the methods of preventing or reducing the concre
5、te sulfate attack.KEYWORDS:concrete sulfate durability erosion mechanism influence factors experimental method prevention and control measures目 录(1) 研究背景(2) 研究现状 1、国外研究现状 2、国内研究现状 3、目前研究的不足之处 4、硫酸盐侵蚀理论模型 5、研究存在的问题(3) 研究目的(4) 侵蚀机理 1、钙矾石腐蚀(E盐破坏) 2、石膏腐蚀(G 盐破坏) 3、碳硫硅钙石腐蚀 4、碱金属硫酸盐侵蚀 5、硫酸镁对水化硅酸钙的腐蚀(5) 影响因
6、素 1、外部因素 2、内部因素(6) 试验方法 1、三种细碎石混凝土试件在水中及过饱和硫酸钠溶液中浸泡六个月内的 主要性能的变化规律 2、干湿循环过程中三种混凝土的主要性能的变化过程与变化趋势(7) 防治措施 1、合理选择水泥品种 2、提高混凝土密实性 3、采用高压蒸汽养护 4、增设必要的保护层 5、严把施工质量关 6、酸盐水泥中掺入耐腐蚀性外加剂研究背景 建筑结构是建筑物的主要骨架,而结构的物质基础是建筑材料。建筑结构的不断优化和不断发展导致建筑材料的更新和发展。水泥混凝土是近现代最广泛使用的建筑材料,也是当前最大宗的人造材料。与其他建筑材料相比,混凝土以其良好的综合性能已成为楼宇、桥梁、大
7、坝、公路和城市运输系统等现代化标志的首选材料。据不完全统计,当今世界每年消耗的混凝土量不少于45亿立方米,而且在21世纪能稳定增长。在人们的传统观念中总是认为混凝土是耐久材料,忽视了混凝土耐久性的研究,在设计上产生了只重视强度设计的思想,因此付出巨大的代价。然而由于混凝土长期处于某种环境中,往往会造成不同程度的有害介质的侵蚀,或是混凝土本身组成材料有害的物理化学作用,宏观上会出现开裂、溶蚀、剥落、膨胀、疏松等导致强度下降,严重影响构造物的使用寿命,造成结构破坏,巨大的经济损失,环境的污染甚至造成人员伤亡等。据相关报道,在一些国家和地区,混凝土的破坏已经成为一个特别严重的经济问题。据估计英国每年
8、花费在混凝土结构上的维修费大约为5亿英镑,美国每年花费的修复费己超过2500亿美元,加拿大如果要全部更新已经破坏的结构,至少需花费5000亿美元。这种投入在世界大多数国家中普遍存在,已成为政府的一种财政负担。更有甚者,部分结构物因病害严重已无法修补和加固,必须拆除重建,其直接和间接损失之大是可想而知的。这一切都说明,深入研究混凝土的腐蚀机理和新的防护方法是十分现实而迫切的。混凝土的耐久性破坏主要包括钢筋的锈蚀、混凝土的碳化、冻融破坏、侵蚀性介质的破坏和碱骨料反应等。混凝土硫酸盐侵蚀是危害性较大的一种侵蚀性介质破坏,是影响混凝土耐久性的重要因素之一,也是影响因素最复杂、危害性最大的一种环境水侵蚀
9、。沿海和内陆盐湖地区,尤其是在含酸性地下水以及高黏土土壤环境中大多含有硫酸盐,混凝土本身也有可能带有硫酸盐,在各种条件下对混凝土产生侵蚀作用,使混凝土发生膨胀、开裂、剥落等现象,丧失强度和粘性,使其内部机构发生破坏,最终导致混凝土的耐久性降低。在我国沿海和内陆盐湖地区,天津、河北、山东、青海等地区存在大量盐碱地区,近年来在我国公路、桥梁、水电、海港等工程以及建筑物基础中均发现混凝土结构物受硫酸盐的问题,严重的甚至导致了混凝土结构物的破坏,使得结构还没有达到其预期的设计使用寿命就过早地发生破坏,造成了严重的工程事故和巨大的经济损失。因此,混凝土硫酸盐侵蚀问题受到了广大研究工作者的重视。图1:普通
10、混凝土在盐湖环境下的破坏情况 美国、加拿大的很多地区也含有硫酸盐土壤,曾经发生过诸多混凝土下水管、混凝土基础、涵洞等的破坏情况。美国加利福尼亚洲南部广大地区的土壤富含硫酸盐,硫酸盐往往以石膏形式存在。住宅的混凝土浇灌2到4年后,因受到硫酸盐侵蚀表面粉化,砂浆脱落,骨料外露,还有胀裂和微小的裂缝。研究现状1、 国外研究现状(1)1892年,米哈埃利斯首次发现硫酸盐对混凝土的侵蚀作用,在侵蚀的混凝土中发现针状晶体,并称为“水泥杆菌,实质上就是钙矾石。(2)1902年,前苏联发现环境水侵蚀事例,此后各国相继发现混凝土结构受环境水侵蚀的事例。(3)1923年美国学者米勒开始在硫酸盐土壤中进行混凝土的侵
11、蚀实验。(4)美国的标准局、农垦局,对混凝土处在含硫酸盐的水中的破坏问题,做了许多室内室外实验,25年后得出:混凝土的密实性和不透水性对混凝土耐久性有重要意义。(5)Mehta在研究中指出,含硅粉的混凝土具有较好的抗硫酸盐腐蚀性,但硫酸氨腐蚀性却相反。2、国内研究现状(1)我国上世纪50年代开展了混凝土的抗硫酸盐侵蚀研究,取得了很大进步(2)铁科院抗硫酸盐腐蚀小组结合我国很多地区的硫酸盐状况,开展了硫酸盐寝室的室内和室外实验。(3)1981年,中国建筑材料研究院制定了抗硫酸盐侵蚀的快速试验法(4)1986年,铁道部在修订了铁路混凝土及砌石工程施工规范中提到随着环境的不同,混凝土的抗侵蚀标准和防
12、护措施的变化(5)1991年,我国颁布了建筑房腐施工及验收规范,标志着我国在抗硫酸盐侵蚀应用和研究相比过去有了很大进步。3、 目前研究的不足之处(1) 对混凝土硫酸盐侵蚀破坏机理的认识停留在表面,缺乏深入的全面的系统研究具体体现在以下方面:钙矾石与石膏的形成条件、结晶速度,结晶数量与结晶压力的关系;混凝土的工作条件与硫酸盐侵蚀的类型、速度只是定性研究,缺乏定量的深入研究。(2) 我国的环境水侵蚀判定标准GB749-65试验方法基本上沿用了前苏联1954年的标准 CH249和H114-54,未能反映近年来硫酸盐侵蚀研究方面的新进展和新成果。(3) 缺乏对防治硫酸盐侵蚀方法的研究。对混凝土硫酸盐侵
13、蚀破坏的机理认识不够,在处理和修补受硫酸盐破坏的建筑物时,由于材料选取不当无法达到预期效果。(4) 没有建立相应的数学模型来定量研究侵蚀程度与影响因素之间的关系。4、硫酸盐侵蚀理论模型(1)基于热动力学的硫酸盐膨胀理论 加拿大渥太华大学的Ping 和Beaudoin(1992)基于热动力学提出了硫酸盐膨胀理论。该理论认为钙矾石与水泥胶体之间的结晶化压力是引起膨胀的主要因素,理论还认为温度也是引起膨胀量的一个因素,因为它能提高固体产物的结晶化压力。(2) 热动力学平衡方程模拟硫酸盐反应 西班牙加泰罗尼亚理工大学的Casanova等利用热动力学平衡方程模拟硫酸盐侵蚀反应,该方法用球形几何模型模拟硫
14、酸盐对混凝土的腐蚀程度。研究结果表明采用物理和化学相结合的方法对混凝土结构腐蚀程度进行预测可以得到良好的效果。(3) 非饱和溶液中的数学模型加拿大魁北克拉瓦尔大学的Marchand(2002)在低浓度硫酸钠溶液对混凝土耐久性的影响方面进行了理论分析,并提出一个在非饱和溶液中的数学模型。此模型既考虑了离子和流体的扩散,也考虑了固相的化学平衡。运用这个数学模型可以分析不同水灰比、不同类型水泥、不同硫酸盐浓度以及不同的潮湿度对扩散性能的影响规律。结果表明:暴露在低浓度的硫酸钠溶液中,混凝土的微观结构将发生明显的改变。硫酸盐粒子在材料中的渗透不仅是钙矾石和石膏生成的原因,而且也是氢氧化钙分解,脱钙的原
15、因。模拟数据进一步说明了水灰比是控制混凝土耐久性的一个重要指标。5、 研究存在的问题(1)如何量化微观结构变化对材料宏观力学性能与微观离子扩散的影响。(2)混凝土硫酸盐侵蚀引起的材料劣化问题需要更多非加速试验数据与现场实测数据的检验。(3)理论模型中对于表面裂缝内离子的扩散研究很缺乏,混凝土硫酸盐侵蚀还需考虑多种离子耦合作用及干湿交替等不利环境的影响。(4)研究主要以实验手段为主,缺乏成熟可靠的理论模型。研究目的混凝土结构凭借着大量的优点而成为土木工程结构设计中的首选形式,虽然新的结构计算理论和新型建筑材料的出现,将来还会产生许多新的结构形式,但钢筋混凝土结构仍然是新世纪最常用的结构形式之一。
16、事实上,从混凝土应用于土木工程至今的一个半世纪以来,大量的钢筋混凝土结构,由于各种各样的原因提前失效,达不到预定的服役年限;这其中有的是由于结构设计的抗力不足导致的,有的则是由于使用荷载的不利变化造成的,但更多的是由于结构的耐久性不足导致的;特别是沿海及近海地区的混凝上结构,由于海洋环境对混凝土的侵蚀,导致钢筋锈蚀而使结构发生早期损坏丧失了结构的耐久性能,这己经成为实际工程中的重要问题。早期损坏的结构需要花费大量的财力进行维修补强,甚至造成停工停产的巨大经济损失。美国学者曾用“五倍定律”形象地描述了混凝土结构耐久性的重要性,尤其是设计对耐久性问题的重要性。例如设计时,对新建项目在钢筋防护方面无
17、谓地每节省1美元,就意味着当发现钢筋锈蚀时采取措施要多追加维修费5美元,顺筋开裂时需多追加维修费25美元,严重破坏时采取措施将追加维修费125美元。因此,钢筋混凝土结构耐久性问题是一个十分重要也是迫切需要加以解决的问题,通过开展对钢筋混凝土结构耐久性的研究,一方面能对已有的建筑结构物进行科学的耐久性评定和剩余寿命预测,以选择对其正确的处理方法:另一方面也可对新建工程项目进行耐久性设计与研究,揭示影响结构寿命的内部与外部因素,从而提高工程的设计水平和施工质量,确保混凝土结构服役期全过程的正常工作。耐久性研究既有服务于服役结构的现实意义,又有指导待建结构进行耐久性设计的重要作用,同时,对于丰富和发
18、展钢筋混凝土结构可靠度理论也具有一定的理论价值。总而言之,我们需要通过对硫酸盐侵蚀混凝土的侵蚀机理的深入系统的研究,对混凝土硫酸盐侵蚀破坏进行明确定义明确界定侵蚀破坏的程度、范围和危害性,对混凝土抗硫酸盐侵蚀耐久性能进行评价,并且提出相应的预防措施。侵蚀机理一、侵蚀机理硫酸盐侵蚀过程中钙矾石、石膏和钙硅石的产生对混凝土产生膨胀破坏作用,这是引起混凝土腐蚀破坏的主要原因。反应生成的盐类矿物可使硬化水泥石中CH和C-S-H等组分溶出或分解,导致水泥石强度和粘结性能损失。图2:硫酸盐腐蚀机理1、 钙矾石腐蚀(E盐破坏) 钙矾石(三硫型水化铝酸钙)是溶解度极小的盐类矿物,在化学结构上结合了大量的结晶水
19、(实际上的结晶水为30-32个),其体积约为原水化铝酸钙的2.5倍,使固相体积显著增大,加之它在矿物形态上是针状晶体,在原水化铝酸钙的固相表面成刺猬状析出,放射状向四方生长,互相挤压而产生极大的内应力,致使混凝土结构物受到破坏。当液相碱度低时,形成的钙矾石往往为大的板条状晶体,这种类型的钙矾石一般不带来有害的膨胀。当液相碱度高时,如在纯硅酸盐水泥混凝土体系中,形成的钙矾石一般为小的针状或片状,甚至呈凝胶状,这类钙矾石的吸附能力强,可产生很大的吸水肿胀作用,形成极大的膨胀应力。 水泥熟料矿物C3A的水化产物:水化铝酸钙(4CaOAl2O3 19H2O)及水化单硫铝酸钙(3CaOAl2O3 CaS
20、O418H2O)都能与石膏发生反应生成水化三硫铝酸钙(钙矾石): (4CaOAl2O3 19H2O)+3CaSO4+14H2O(3CaOAl2O33CaSO432H2O)+ Ca(OH)2 (3CaOAl2O3CaSO418H2O+2CaSO4+14H2O(3CaOAl2O3 3CaSO432H2O)钙矾石的溶解度很低,容易在溶液中析出,水化铝酸钙和水化单硫铝酸钙转化为钙矾石,其体积有大量增加。生成物的体积比反应物大1.5 倍或更多,呈针状结晶。其破坏特征是在表面出现几条较粗大的裂缝。图3:扫描电子显微镜下的钙矾石2、 石膏腐蚀(G盐破坏) 水泥石内部形成的二水石膏体积增大1.24倍,使水泥石
21、因内应力过大而破坏,又称G盐破坏。研究表明:当侵蚀SO42-浓度在1000毫克/升以下时,只有钙矾石结晶形成;当SO42-浓度逐步提高时,开始平行地发生钙矾石-石膏复合结晶,两种结晶并存;当SO42-浓度相当大的范围内,石膏结晶侵蚀只起从属作用,只有在SO42-浓度非常高时,石膏结晶才起主导作用。 溶液中的硫酸钠、硫酸钾、硫酸镁与水泥水化产物Ca(OH)2反应生成石膏。以硫酸钠为例,发生如下的化学反应: Ca(OH)2+Na2SO410H2OCaSO42H2O+2NaOH+8H2O在流动的水中,反应可不断进行,直至Ca(OH)2被完全消耗;在不流动的水中,随着NaOH的聚集,可达到化学平衡,一
22、部分SO3以石膏析出。Ca(OH)2转化为石膏,体积是原来的二倍多,从而对混凝土产生膨胀破坏作用。(G盐破坏和E盐破坏小结:当侵蚀溶液中SO42-的浓度1000mg/L 以下时,只有钙矾石生成。当溶液中SO42-大于1000mg/L 时,若水泥石的毛细孔为饱和石灰溶液所填充,不仅会有钙矾石生成,而且还会有石膏结晶析出。在SO42- 浓度相当大的变化范围内,石膏结晶侵蚀只起从属作用,只有在SO42-浓度非常高时,石膏结晶侵蚀才起主导作用。事实上,若混凝土处于干湿交替状态,即使SO42- 的浓度不高,石膏结晶侵蚀也往往起着主导作用,因为水分蒸发使侵蚀溶液浓缩,从而导致石膏结晶的形成。)3、 碳硫硅
23、钙石腐蚀从目前国外研究情况看,形成碳硫硅钙有两种途径:(1)由C-S-H直接反应生成以上反应生成的Ca(OH)2又可进行碳化反应:该反应生成物CaCO3和H2O再参与前一层次的反应,循环往复,不断消耗水泥水化产物中的C-S-H和由C3A、C4AF相水化产生的水化产物,并不断完成由硅钙矾石向碳硫硅钙石。Gaze和Crammond 研究指出,只要体系中存在CO32-和SO42-离子,且孔溶液的PH值高于10.5,这种形成的碳硫硅钙石晶体的反应将不断进行。(2)由硅钙矾石逐渐转化而成这是由硅钙矾石转化为碳硫硅钙石的过程。以上反应生成的Ca(OH)2又可进行碳化反应:该反应生成物CaCO3和H2O再参
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 硫酸盐 混凝土 耐久性 影响
限制150内