初高级中学数学知识衔接资料.doc
《初高级中学数学知识衔接资料.doc》由会员分享,可在线阅读,更多相关《初高级中学数学知识衔接资料.doc(39页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、,1.1 数与式的运算1.1绝对值绝对值的代数意义:正数的绝对值是它的本身,负数的绝对值是它的相反数,零的绝对值仍是零即绝对值的几何意义:一个数的绝对值,是数轴上表示它的点到原点的距离 两个数的差的绝对值的几何意义:表示在数轴上,数和数之间的距离练 习1填空:(1)在数轴上,绝对值为4,且在原点左边的点表示的有理数为_(2)若,则x=_;若,则x=_(3)若|x-1| =0, 则x=_,若|1-x |=1,则x=_(4)如果,且,则b_;若,则c_(5)例. 解不等式:解法一:由,得;若,不等式可变为,即,得,又x1,x-3;若,不等式可变为,即 又 综上所述,原不等式的解为或。1Ax-3Cx
2、P|x1|D5解法二:如图,表示x轴上坐标为x的点P到坐标为1的点A之间的距离|PA|,即|PA|x1|;所以的几何意义即为|PA|4可知点P 在点C(坐标为-3)的左侧、或点P在点D(坐标5)的右侧 或。2、解不等式:3、a2+b3+c4=0,则a+2b+3c的值为多少4. 已知x+y+3=0, 求x+y的值。5化简:|x5|2x13|(x5)6. 已知|a|=3,|b|=2,|c|=1,且abc,求a、b、c的值。7. 已知a0,求|b-a+1-a-b-5|的值。8、如果x-2,那么|1-|1+x|= 例. 解不等式:49、解不等式|x+2|+|x-3|10. 例. 若x2=9,y=2,且
3、x-y=y-x,求x+y的值1、 9. 已知,且,求的值。2、例. 如果,求9、设,求的值1.1.2. 乘法公式我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 ;(2)完全平方公式 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 ;(2)立方差公式 ;(3)三数和平方公式 ;(4)两数和立方公式 ;(5)两数差立方公式 例1 计算:例2 已知,求的值练 习1填空: (1)( ); (2) ; (3 ) 2选择题:(1)若是一个完全平方式,则等于 ( )(A) (B) (C) (D)(2)不论,为何实数,的值 ( ) (A)总是正数 (B)总是负数 (C)可以是零 (D)可以
4、是正数也可以是负数1.1.3二次根式 求定义域问题 最简二次根式分母有理化同类二次根式 二次根式加减法例1.将下列式子化为最简二次根式:(1); (2); (3)例2计算:例3 试比较下列各组数的大小:和; 和; 2 例4化简:例 5 化简:(1); (2)例 6 已知,求的值 练 习2填空:(1)_ _;(2)若,则的取值范围是_ _ _;(3)_ _;(4)若,则_ _3选择题:等式成立的条件是 ( )(A) (B) (C) (D)4若,求的值5.计算 (1) (2)(3) (4)(5) (6)(7) (8)6. 7. 先化简,再求值,其中。1.1.分式知识网络 1分式的定义形如的式子,若
5、B中含有字母,且,则称为分式分式的基本性质:当M0时,分式具有性质:; 常用的式子:例1若分式有意义,则x应满足()A、x-1B、x -1且x 2 C、x2 D、x -1或x 2若值为0,则x应满足()A、x=2 B、x =-2 C、x =-2或x =2 D、x =-1或x =2例2. 化简求值例3(1) (2)证明:对任意大于1的正整数n, 有例4设,且e1,2c25ac2a20,求e的值例5. 化简:分式方程例6若,求常数的值练 习1填空题:对任意的正整数n, ();2选择题:若,则( ) (A) (B) (C)(D)4计算5. 解方程6. 7. 如果下列关于x的方程有正数解,求m的取值范
6、围。8. 如果关于x的方程无解,求k的值,作业1解不等式: (1) ; (2) ; (3) 2已知,求的值3填空:(1)_;(2)若,则的取值范围是_;(3)_4. 5.如果整数、满足等式,求与的值6.若,则() (A) (B) (C) (D)7.解下列方程:(1) (2) (3)(2)计算等于() (A)(B)(C)(D)8,则_ _;9已知:,求的值10计算:1.2 分解因式因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法1十字相乘法例1 分解因式: (1)x23x2; (2)x24x12; (3); (4) 2提取公因式法与分组分解法例2
7、 分解因式: (1); (2)3关于x的二次三项式ax2+bx+c(a0)的因式分解若关于x的方程的两个实数根是、,则二次三项式就可分解为例3把下列关于x的二次多项式分解因式:(1); (2)练 习1选择题:多项式的一个因式为 ( )(A) (B) (C) (D)2分解因式:(1)x26x8; (2)8a3b3;(3)x22x1; (4)习题1.21分解因式:(1) ; (2); (3); (4)2在实数范围内因式分解:(1) ; (2); (3); (4)3三边,满足,试判定的形状4分解因式:x2x(a2a)2.1 一元二次方程2.1.1根的判别式我们知道,对于一元二次方程ax2bxc0(a
8、0),用配方法可以将其变形为 因为a0,所以,4a20于是(1)当b24ac0时,方程的右端是一个正数,因此,原方程有两个不相等的实数根 x1,2;(2)当b24ac0时,方程的右端为零,因此,原方程有两个等的实数根 x1x2;(3)当b24ac0时,方程的右端是一个负数,而方程的左边一定大于或等于零,因此,原方程没有实数根由此可知,一元二次方程ax2bxc0(a0)的根的情况可以由b24ac来判定,我们把b24ac叫做一元二次方程ax2bxc0(a0)的根的判别式,通常用符号“”来表示综上所述,对于一元二次方程ax2bxc0(a0),有(1) 当0时,方程有两个不相等的实数根 x1,2;(2
9、)当0时,方程有两个相等的实数根 x1x2;(3)当0时,方程没有实数根例1 判定下列关于x的方程的根的情况(其中a为常数),如果方程有实数根,写出方程的实数根(1)x23x30; (2)x2ax10; (3) x2ax(a1)0; (4)x22xa02.1.2 根与系数的关系(韦达定理) 若一元二次方程ax2bxc0(a0)有两个实数根 ,则有 ; 所以,一元二次方程的根与系数之间存在下列关系: 如果ax2bxc0(a0)的两根分别是x1,x2,那么x1x2,x1x2这一关系也被称为韦达定理特别地,对于二次项系数为1的一元二次方程x2pxq0,若x1,x2是其两根,由韦达定理可知 x1x2p
10、,x1x2q,即 p(x1x2),qx1x2,所以,方程x2pxq0可化为 x2(x1x2)xx1x20,由于x1,x2是一元二次方程x2pxq0的两根,所以,x1,x2也是一元二次方程x2(x1x2)xx1x20因此有以两个数x1,x2为根的一元二次方程(二次项系数为1)是x2(x1x2)xx1x20例2 已知方程的一个根是2,求它的另一个根及k的值例3 已知关于x的方程x22(m2)xm240有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出
11、m的值,取满足条件的m的值即可(2)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式是否大于或大于零因为,韦达定理成立的前提是一元二次方程有实数根例4 已知两个数的和为4,积为12,求这两个数例5 若x1和x2分别是一元二次方程2x25x30的两根(1)求| x1x2|的值; (2)求的值;(3)x13x23说明:一元二次方程的两根之差的绝对值是一个重要的量,今后我们经常会遇到求这一个量的问题,为了解题简便,我们可以探讨出其一般规律:设x1和x2分别是一元二次方程ax2bxc0(a0),则,| x1x2| 于是有下面的结论:若x1和x2分别是一元二次方程ax2bxc0(a0)
12、,则| x1x2|(其中b24ac)今后,在求一元二次方程的两根之差的绝对值时,可以直接利用上面的结论例6 若关于x的一元二次方程x2xa40的一根大于零、另一根小于零,求实数a的取值范围练 习1选择题:(1)方程的根的情况是 ( ) (A)有一个实数根 (B)有两个不相等的实数根(C)有两个相等的实数根 (D)没有实数根(2)若关于x的方程mx2(2m1)xm0有两个不相等的实数根,则实数m的取值范围是 ( ) (A)m (B)m (C)m,且m0 (D)m,且m0 2填空:(1)若方程x23x10的两根分别是x1和x2,则 (2)方程mx2x2m0(m0)的根的情况是 (3)以3和1为根的
13、一元二次方程是 3已知,当k取何值时,方程kx2axb0有两个不相等的实数根?4已知方程x23x10的两根为x1和x2,求(x13)( x23)的值习题2.1A 组1选择题:(1)已知关于x的方程x2kx20的一个根是1,则它的另一个根是( ) (A)3 (B)3 (C)2 (D)2(2)下列四个说法: 方程x22x70的两根之和为2,两根之积为7;方程x22x70的两根之和为2,两根之积为7;方程3 x270的两根之和为0,两根之积为;方程3 x22x0的两根之和为2,两根之积为0其中正确说法的个数是 ( ) (A)1个 (B)2个 (C)3个 (D)4个(3)关于x的一元二次方程ax25x
14、a2a0的一个根是0,则a的值是( )(A)0 (B)1 (C)1 (D)0,或12填空:(1)方程kx24x10的两根之和为2,则k (2)方程2x2x40的两根为,则22 (3)已知关于x的方程x2ax3a0的一个根是2,则它的另一个根是 (4)方程2x22x10的两根为x1和x2,则| x1x2| 3试判定当m取何值时,关于x的一元二次方程m2x2(2m1) x10有两个不相等的实数根?有两个相等的实数根?没有实数根?4求一个一元二次方程,使它的两根分别是方程x27x10各根的相反数B 组1选择题:(1)已知一个直角三角形的两条直角边长恰好是方程2x28x70的两根,则这个直角三角形的斜
15、边长等于 ( )(A) (B)3 (C)6 (D)9(2)若x1,x2是方程2x24x10的两个根,则的值为 ( ) (A)6 (B)4 (C)3 (D)(3)如果关于x的方程x22(1m)xm20有两实数根,则的取值范围为 ( ) (A) (B) (C)1 (D)1 (4)已知a,b,c是ABC的三边长,那么方程cx2(ab)x0的根的情况是 ( ) (A)没有实数根 (B)有两个不相等的实数根(C)有两个相等的实数根 (D)有两个异号实数根(5)若关于x的方程x2(k21) xk10的两根互为相反数,则k的值为 ( ) (A)1,或1 (B)1 (C)1 (D)02填空:(1)若m,n是方
16、程x22005x10的两个实数根,则m2nmn2mn的值等于 (2)如果a,b是方程x2x10的两个实数根,那么代数式a3a2bab2b3的值是 3已知关于x的方程x2kx20(1)求证:方程有两个不相等的实数根;(2)设方程的两根为x1和x2,如果2(x1x2)x1x2,求实数k的取值范围4一元二次方程ax2bxc0(a0)的两根为x1和x2求:(1)| x1x2|和;(2)x13x235关于x的方程x24xm0的两根为x1,x2满足| x1x2|2,求实数m的值6 已知x1,x2是关于x的一元二次方程4kx24kxk10的两个实数根(1)是否存在实数k,使(2x1x2)( x12 x2)成
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高级中学 数学知识 衔接 资料
限制150内