第二讲数值模拟基础及方法理论精选文档.ppt
《第二讲数值模拟基础及方法理论精选文档.ppt》由会员分享,可在线阅读,更多相关《第二讲数值模拟基础及方法理论精选文档.ppt(49页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第二讲数值模拟基础及方法理论本讲稿第一页,共四十九页地下水建模方法和步骤地下水建模方法和步骤1.求解地下水运动方程的数值方法求解地下水运动方程的数值方法2.地下水数值模型建模步骤地下水数值模型建模步骤3.建模所需要的基本资料建模所需要的基本资料 本讲稿第二页,共四十九页 绝大部分数学模型是无法用解析法求解的,数值绝大部分数学模型是无法用解析法求解的,数值化就是将数学模型转化为可解的数值模型。化就是将数学模型转化为可解的数值模型。1.数值方法数值方法1.1有限差分法有限差分法1.2有限单元法有限单元法1.3分有限差分法分有限差分法1.4半解析半数值法半解析半数值法1.5边界元法边界元法本讲稿第三
2、页,共四十九页o(1)有限差分法原理有限差分法原理o(2)两种方法建立有限差分方程两种方法建立有限差分方程o(3)求解有限差分方程求解有限差分方程o(4)收敛性和稳定性概念收敛性和稳定性概念o(5)算例算例1.1有限差分法有限差分法本讲稿第四页,共四十九页(1)有限差分法的基本原理有限差分法的基本原理将连续的问题离散后求解:将连续的问题离散后求解:方法一方法一以地下水流基本微分方程以地下水流基本微分方程及其定解条件为基础,及其定解条件为基础,在渗流区在渗流区剖分基础上,用差商代替微商,将剖分基础上,用差商代替微商,将地下水流微分方程的求解转化为差地下水流微分方程的求解转化为差分方程(代数方程)
3、求解。分方程(代数方程)求解。方法二方法二在渗流区剖分的基础上,直在渗流区剖分的基础上,直接由达西定律和水均衡原理,建立各接由达西定律和水均衡原理,建立各个均衡区的水均衡方程,即差分方程。个均衡区的水均衡方程,即差分方程。矩形网格矩形网格多边形网格多边形网格本讲稿第五页,共四十九页网格划分的基本类型网格划分的基本类型o(1)先划格线,格)先划格线,格点位于网格中心点位于网格中心均均衡衡网网格格节节点点网网格格o(2)先规定格点位置,)先规定格点位置,再垂直平分两相邻结点的再垂直平分两相邻结点的连线作格线,形成的网格连线作格线,形成的网格即为水均衡区即为水均衡区本讲稿第六页,共四十九页MODFL
4、OW网格系统网格系统本讲稿第七页,共四十九页导导数数的的有有限限差差商商近近似似导数的定义导数的定义 当当非常小的时候,有非常小的时候,有 上式右端项即为上式右端项即为f(x)(x)在在x0 0处的差商。处的差商。这样定义的差商很容易理解,但不知道用差商代替微商所产生的误差。下面利用泰勒公式导出差商及其误差。方法一:方法一:差商代替微商差商代替微商(2)有限差分方程建立有限差分方程建立本讲稿第八页,共四十九页已知泰勒公式 由A得:AB 由B 得:称称 为为f(x)在在x0处的处的一阶前向差商,一阶前向差商,为为截断误差截断误差。称称 为为f(x)在在x0处的处的一阶后向差商,一阶后向差商,为为
5、截断误差截断误差。方法一方法一本讲稿第九页,共四十九页 由A-B可以得:由A+B可以得:AB称称 为为f(x)在在x0处的处的一阶中心差商,一阶中心差商,为为截断误差截断误差。称称 为为f(x)在在x0处的处的二阶二阶中心中心差商,差商,为为截断误差截断误差。方法一方法一本讲稿第十页,共四十九页l对于偏导数(偏微商),类似可以得到相应对于偏导数(偏微商),类似可以得到相应的差商:的差商:方法一方法一(2)有限差分方程建立有限差分方程建立(续续)本讲稿第十一页,共四十九页一维控制方程差分格式一维控制方程差分格式显式差分格式显式差分格式隐式差分格式隐式差分格式方法一方法一控制方程控制方程网格剖分网
6、格剖分nx个个本讲稿第十二页,共四十九页 取右图所示得微小六面体。取右图所示得微小六面体。设与设与x,y,z,方向对应得主渗透系方向对应得主渗透系数分别为数分别为Kx,Ky,Kz;建立均衡;建立均衡期期 t时段内,微小均衡六面体时段内,微小均衡六面体的水量守恒方程。的水量守恒方程。方法二:方法二:达西定律和水均衡原理达西定律和水均衡原理(2)有限差分方程建立有限差分方程建立(续续)本讲稿第十三页,共四十九页基于基于达西定律达西定律,x,y,z方向流入方向流入流出分别为流出分别为:l t时段内,侧向流入与源汇项导致六面体水量变化量为:时段内,侧向流入与源汇项导致六面体水量变化量为:ABC(2)有
7、限差分方程建立有限差分方程建立(续续)方法二:方法二:达西定律和水均衡原理达西定律和水均衡原理DA+B+C+D源汇项源汇项本讲稿第十四页,共四十九页六面体内地下水储存量的变化为六面体内地下水储存量的变化为由水均衡原理得三维地下水流动方程的有限差分格式由水均衡原理得三维地下水流动方程的有限差分格式(2)有限差分方程建立有限差分方程建立(续续)方法二:方法二:达西定律和水均衡原理达西定律和水均衡原理本讲稿第十五页,共四十九页有限差分法有限差分法:三维(三维(MODFLOW)差商代替微商差商代替微商本讲稿第十六页,共四十九页(3)差分方程求解差分方程求解l一维显式差分格式网格个数为网格个数为ni直接
8、求解直接求解本讲稿第十七页,共四十九页(3)差分方程求解差分方程求解l一维隐式差分格式一维隐式差分格式网格个数为网格个数为ni迭代求解迭代求解方方程程组组PCGSIPSORWHSSAMGGMGMODFLOW本讲稿第十八页,共四十九页(4)差分方程的收敛性和稳定性差分方程的收敛性和稳定性l截断误差截断误差:用差商代替微商时,地下水流动方程产生的误用差商代替微商时,地下水流动方程产生的误差为截断误差。差为截断误差。l收敛性收敛性:当空间步长和时间步长趋于当空间步长和时间步长趋于0 0时,有限差分方程时,有限差分方程的精确解趋于地下水流动问题微分方程定解问题的精确的精确解趋于地下水流动问题微分方程定
9、解问题的精确解。则称该差分格式是收敛的。解。则称该差分格式是收敛的。l稳定性稳定性:如果在求解差分方程过程中,某时间步引入某个如果在求解差分方程过程中,某时间步引入某个误差,而在以后的各时段计算中,该误差不再扩大,则误差,而在以后的各时段计算中,该误差不再扩大,则称该差分格式是稳定的。称该差分格式是稳定的。一维一维显示格式显示格式的收敛条件和稳定条件是:的收敛条件和稳定条件是:本讲稿第十九页,共四十九页(6)算例:算例:显式有限差格式显式有限差格式 设两条河流平行、完全切割含水层,含水层等厚、均质各向设两条河流平行、完全切割含水层,含水层等厚、均质各向同性。同性。应用实例:河间地块承压水流模型
10、应用实例:河间地块承压水流模型本讲稿第二十页,共四十九页步骤:步骤:(1 1)基础资料的分析)基础资料的分析(2 2)概念模型)概念模型(3 3)数学模型)数学模型(4 4)数值方法及计算机程序)数值方法及计算机程序(5 5)参数)参数(6 6)结果分析)结果分析 本讲稿第二十一页,共四十九页建立数学模型建立数学模型(1 1)模型概化)模型概化 由所述水文地质条件,可以概化为一维承压水流问题。由所述水文地质条件,可以概化为一维承压水流问题。(2 2)建立坐标系)建立坐标系(如图),将地下水流动系统空间结构放在坐标系内,从而(如图),将地下水流动系统空间结构放在坐标系内,从而量化各变量的取值范围
11、。本例,取量化各变量的取值范围。本例,取x-x-轴原点位于左端河,右侧为正向,轴原点位于左端河,右侧为正向,设两河流间距为设两河流间距为L.L.(3 3)数学模型)数学模型本讲稿第二十二页,共四十九页差分方程及其解法差分方程及其解法显式格式显式格式将(0L)分成 N 等份,1)1)网格剖分:网格剖分:取时间步长取时间步长 ,记,记 (n n=0=0、1 1、2 2、3 3、44)记 ,(i=0,1,2,3,4N)2 2)建立差分方程)建立差分方程:在网格系统中任意取一点:在网格系统中任意取一点设设是问题的解,则在是问题的解,则在处有处有记为(记为(i i,n n)本讲稿第二十三页,共四十九页用
12、差商代替微商用差商代替微商:将上述两式舍去余项,代入方程并记将上述两式舍去余项,代入方程并记为为显然该式具有截断误差得到得到显式格式(续显式格式(续1)本讲稿第二十四页,共四十九页引入无量纲变量引入无量纲变量:将该式子代入得到:将该式子代入得到:(i=1,2,3,.N-1),(n=1,2,3,.)显式格式(续显式格式(续2)本讲稿第二十五页,共四十九页3)显示差分方程的求解)显示差分方程的求解l计算各结点初始时刻水头值计算各结点初始时刻水头值l利用差分方程计算各结点利用差分方程计算各结点t1t1时刻水头值时刻水头值l利用边界条件计算边界结点水头值利用边界条件计算边界结点水头值l重复重复2 2、
13、3 3步,直到计算出拟计算的各个时刻的水头值步,直到计算出拟计算的各个时刻的水头值显式格式(续显式格式(续3)本讲稿第二十六页,共四十九页算例(续算例(续4)在上述模型中,设在上述模型中,设L=1000米米取空间步长为取空间步长为200200米,时间步长为米,时间步长为0.250.25天,分别计算各节点天,分别计算各节点各各时刻的水头值。时刻的水头值。本讲稿第二十七页,共四十九页Time/dayx=0 mx=200 mx=400 mx=600 mx=800 mx=1000 m02010101010100.252012.5101010100.502013.7510.6251010100.7520
14、14.531 11.250 10.156 10101.002015.078 11.797 10.391 10.039 101.252015.488 12.266 10.654 10.117 10算例(续算例(续5)本讲稿第二十八页,共四十九页Time/dayx=0 mx=200 mx=400 mx=600 mx=800 mx=1000 m02010101010100.252020101010100.502010201010100.7520300 2010101.0020-10 101.252010算例(续算例(续6)如果如果 t=1,t=1,则则本讲稿第二十九页,共四十九页(6)算例:算例:隐
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 数值 模拟 基础 方法 理论 精选 文档
限制150内