天津市佳春中学中考数学复习 二次函数的应用(几何问题).doc
《天津市佳春中学中考数学复习 二次函数的应用(几何问题).doc》由会员分享,可在线阅读,更多相关《天津市佳春中学中考数学复习 二次函数的应用(几何问题).doc(72页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数的应用(几何问题)一、选择题1.(2012甘肃兰州4分)二次函数yax2bxc(a0)的图象如图所示,若|ax2bxc|k(k0)有两个不相等的实数根,则k的取值范围是【 】Ak3 Bk3 Ck3 Dk3【答案】 D。【考点】二次函数的图象和性质。【分析】根据题意得:y|ax2bxc|的图象如右图,|ax2bxc|k(k0)有两个不相等的实数根,k3。故选D。二、填空题三、解答题1. (2012天津市10分)已知抛物线y=ax2+bx+c(02ab)的顶点为P(x0,y0),点A(1,yA)、B(0,yB)、C(1,yC)在该抛物线上()当a=1,b=4,c=10时,求顶点P的坐标;求
2、的值;()当y00恒成立时,求的最小值【答案】解:()若a=1,b=4,c=10,此时抛物线的解析式为y=x2+4x+10。 y=x2+4x+10=(x+2)2+6,抛物线的顶点坐标为P(2,6)。点A(1,yA)、B(0,yB)、C(1,yC)在抛物线y=x2+4x+10上,yA=15,yB=10,yC=7。()由02ab,得。由题意,如图过点A作AA1x轴于点A1,则AA1=yA,OA1=1。连接BC,过点C作CDy轴于点D,则BD=yByC,CD=1。过点A作AFBC,交抛物线于点E(x1,yE),交x轴于点F(x2,0)。则FAA1=CBD。RtAFA1RtBCD。 ,即。过点E作EG
3、AA1于点G,易得AEGBCD。,即。点A(1,yA)、B(0,yB)、C(1,yC)、E(x1,yE)在抛物线y=ax2+bx+c上,yA=a+b+c,yB=c,yC=ab+c,yE=ax12+bx1+c,化简,得x12x12=0,解得x1=2(x1=1舍去)。y00恒成立,根据题意,有x2x11。则1x21x1,即1x23。的最小值为3。 【考点】二次函数综合题,二次函数的性质,曲线上点的坐标与方程的关系,相似三角形的判定和性质。【分析】()将a=1,b=4,c=10代入解析式,即可得到二次函数解析式。将二次函数化为顶点式,即可得到得到抛物线顶点坐标。将A(1,yA)、B(0,yB)、C(
4、1,yC)分别代入解析式,即可求出yA、yB、yC的值,然后计算的值即可。()根据02ab,求出,作出图中辅助线:点A作AA1x轴于点A1,则AA1=yA,OA1=1连接BC,过点C作CDy轴于点D,则BD=yByC,CD=1过点A作AFBC,交抛物线于点E(x1,yE),交x轴于点F(x2,0)。证出RtAFA1RtBCD,得到,再根据AEGBCD得到,然后求出yA、yB、yC、yE的表达式,然后y00恒成立,得到x2x11,从而利用不等式求出 的最小值。 2. (2012上海市12分)如图,在平面直角坐标系中,二次函数y=ax2+6x+c的图象经过点A(4,0)、B(1,0),与y轴交于点
5、C,点D在线段OC上,OD=t,点E在第二象限,ADE=90,tanDAE=,EFOD,垂足为F(1)求这个二次函数的解析式;(2)求线段EF、OF的长(用含t的代数式表示);(3)当ECA=OAC时,求t的值【答案】解:(1)二次函数y=ax2+6x+c的图象经过点A(4,0)、B(1,0),解得。这个二次函数的解析式为:y=2x2+6x+8。(2)EFD=EDA=90,DEF+EDF=90,EDF+ODA=90。DEF=ODA。EDFDAO。,。OD=t,EF=。同理,DF=2,OF=t2。(3)抛物线的解析式为:y=2x2+6x+8,C(0,8),OC=8。如图,连接EC、AC,过A作E
6、C的垂线交CE于G点ECA=OAC,OAC=GCA(等角的余角相等)。在CAG与OCA中,OAC=GCA,AC=CA,ECA=OAC,CAGOCA(ASA)。CG=AO=4,AG=OC=8。如图,过E点作EMx轴于点M,则在RtAEM中,EM=OF=t2,AM=OA+AM=OA+EF=4+,由勾股定理得: 。在RtAEG中,由勾股定理得:。在RtECF中,EF=,CF=OCOF=10t,CE=CG+EG=4+由勾股定理得:EF2+CF2=CE2,即。解得t1=10(不合题意,舍去),t2=6。t=6。【考点】二次函数综合题,曲线上点的坐标与方程的关系,相似三角形的判定和性质,锐角三角函数定义,
7、全等三角形的判定和性质,勾股定理。【分析】(1)已知点A、B坐标,用待定系数法求抛物线解析式即可。 (2)先证明EDFDAO,然后利用相似三角形对应边的比例关系以及三角形函数的定义求解。(3)通过作辅助线构造一对全等三角形:CAGOCA,得到CG、AG的长度;然后利用勾股定理求得AE、EG的长度(用含t的代数式表示);最后在RtECF中,利用勾股定理,得到关于t的无理方程,解方程求出t的值。3. (2012广东广州14分)如图,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点
8、D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式【答案】解:(1)在中,令y=0,即,解得x1=4,x2=2。 点A在点B的左侧,A、B点的坐标为A(4,0)、B(2,0)。 (2)由得,对称轴为x=1。 在中,令x=0,得y=3。 OC=3,AB=6,。在RtAOC中,。设ACD中AC边上的高为h,则有ACh=9,解得h=。如图1,在坐标平面内作直线平行于AC,且到AC的距离=h=,这样的直线有2条,分别是L1和L2,则直线与对称轴x=1的两个交点即为所求的点D。设L1交y轴于E,过C作CFL1于F,则CF=h
9、=,。设直线AC的解析式为y=kx+b,将A(4,0),B(0,3)坐标代入,得,解得。直线AC解析式为。直线L1可以看做直线AC向下平移CE长度单位(个长度单位)而形成的,直线L1的解析式为。则D1的纵坐标为。D1(4,)。同理,直线AC向上平移个长度单位得到L2,可求得D2(1,)。综上所述,D点坐标为:D1(4,),D2(1,)。(3)如图2,以AB为直径作F,圆心为F过E点作F的切线,这样的切线有2条连接FM,过M作MNx轴于点N。A(4,0),B(2,0),F(1,0),F半径FM=FB=3。又FE=5,则在RtMEF中,-ME=,sinMFE=,cosMFE=。在RtFMN中,MN
10、=MNsinMFE=3,FN=MNcosMFE=3。则ON=。M点坐标为(,)。直线l过M(,),E(4,0),设直线l的解析式为y=k1x+b1,则有,解得。直线l的解析式为y=x+3。同理,可以求得另一条切线的解析式为y=x3。综上所述,直线l的解析式为y=x+3或y=x3。【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,二次函数的性质,勾股定理,直线平行和平移的性质,直线与圆的位置关系,直线与圆相切的性质,圆周角定理,锐角三角函数定义。【分析】(1)A、B点为抛物线与x轴交点,令y=0,解一元二次方程即可求解。(2)根据题意求出ACD中AC边上的高,设为h在坐标平面内,作
11、AC的平行线,平行线之间的距离等于h根据等底等高面积相等的原理,则平行线与坐标轴的交点即为所求的D点从一次函数的观点来看,这样的平行线可以看做是直线AC向上或向下平移而形成因此先求出直线AC的解析式,再求出平移距离,即可求得所作平行线的解析式,从而求得D点坐标。这样的平行线有两条。(3)本问关键是理解“以A、B、M为顶点所作的直角三角形有且只有三个”的含义因为过A、B点作x轴的垂线,其与直线l的两个交点均可以与A、B点构成直角三角形,这样已经有符合题意的两个直角三角形;第三个直角三角形从直线与圆的位置关系方面考虑,以AB为直径作圆,当直线与圆相切时,根据圆周角定理,切点与A、B点构成直角三角形
12、从而问题得解。这样的切线有两条。4. (2012广东肇庆10分)已知二次函数图象的顶点横坐标是2,与x轴交于A(x1,0)、B(x2,0),x10x2,与y轴交于点C,O为坐标原点,(1)求证: ;(2)求m、n的值;(3)当p0且二次函数图象与直线仅有一个交点时,求二次函数的最大值【答案】(1)证明:二次函数图象的顶点横坐标是2,抛物线的对称轴为x=2,即,化简得:n+4m=0。(2)解:二次函数与x轴交于A(x1,0)、B(x2,0),x10x2,OA=x1,OB=x2;。令x=0,得y=p,C(0,p),OC=|p|。由三角函数定义得:。tanCAOtanCBO=1,即 ,化简得:。将
13、代入得:,化简得:。由(1)知n+4m=0,当n=1时,;当n=1时,。m、n的值为: ,n=1(此时抛物线开口向上)或 ,n=1(此时抛物线开口向下)。(3)解:由(2)知,当p0时,n=1, ,抛物线解析式为:。联立抛物线与直线y=x+3解析式得到:,化简得: 。二次函数图象与直线y=x+3仅有一个交点,一元二次方程根的判别式等于0,即=02+16(p3)=0,解得p=3。抛物线解析式为:。当x=2时,二次函数有最大值,最大值为4。当p0且二次函数图象与直线y=x+3仅有一个交点时,二次函数的最大值为4。【考点】二次函数综合题,曲线上点的坐标与方程的关系,一元二次方程根的判别式和根与系数的
14、关系,锐角三角函数定义,二次函数的性质。【分析】(1)由题意可知抛物线的对称轴为x=2,利用对称轴公式,化简即得n+4m=0。(2)利用三角函数定义和抛物线与x轴交点坐标性质求解特别需要注意的是抛物线的开口方向未定,所以所求m、n的值将有两组。(3)利用一元二次方程的判别式等于0求解当p0时,m、n的值随之确定;将抛物线的解析式与直线的解析式联立,得到一个一元二次方程;由交点唯一可知,此一元二次方程的判别式等于0,据此求出p的值,从而确定了抛物线的解析式;最后由抛物线的解析式确定其最大值。5. (2012广东珠海7分)如图,二次函数y=(x2)2+m的图象与y轴交于点C,点B是点C关于该二次函
15、数图象的对称轴对称的点已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx+b(x2)2+m的x的取值范围6. (2012浙江杭州12分)在平面直角坐标系内,反比例函数和二次函数y=k(x2+x1)的图象交于点A(1,k)和点B(1,k)(1)当k=2时,求反比例函数的解析式;(2)要使反比例函数和二次函数都是y随着x的增大而增大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当ABQ是以AB为斜边的直角三角形时,求k的值【答案】解:(1)当k=2时,A(1,2),A在反比例函数图象上,设反
16、比例函数的解析式为:。将A(1,2)代入得: ,解得:m=2。反比例函数的解析式为:。(2)要使反比例函数和二次函数都是y随着x的增大而增大,k0。二次函数y=k(x2+x1)=,它的对称轴为:直线x=。要使二次函数y=k(x2+x1)满足上述条件,在k0的情况下,x必须在对称轴的左边,即x时,才能使得y随着x的增大而增大。综上所述,k0且x。(3)由(2)可得:Q。ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,(如图是其中的一种情况)原点O平分AB,OQ=OA=OB。作ADOC,QCOC,垂足分别为点C,D。,解得:k=。【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的
17、关系,反比例函数和二次函数的性质。【分析】(1)当k=2时,即可求得点A的坐标,然后设反比例函数的解析式为:,利用待定系数法即可求得答案;(2)由反比例函数和二次函数都是y随着x的增大而增大,可得k0。又由二次函数y=k(x2+x1)的对称轴为x=,可得x时,才能使得y随着x的增大而增大。(3)由ABQ是以AB为斜边的直角三角形,A点与B点关于原点对称,利用直角三角形斜边上的中线等于斜边的一半,即可得OQ=OA=OB,又由Q,A(1,k),即可得,从而求得答案。7. (2012浙江宁波12分)如图,二次函数y=ax2+bx+c的图象交x轴于A(1,0),B(2,0),交y轴于C(0,2),过A
18、,C画直线(1)求二次函数的解析式;(2)点P在x轴正半轴上,且PA=PC,求OP的长;(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H若M在y轴右侧,且CHMAOC(点C与点A对应),求点M的坐标;若M的半径为,求点M的坐标【答案】解:(1)二次函数y=ax2+bx+c的图象交x轴于A(1,0),B(2,0)设该二次函数的解析式为:y=a(x+1)(x2), 将x=0,y=2代入,得2=a(0+1)(02),解得a=1。抛物线的解析式为y=(x+1)(x2),即y=x2x2。(2)设OP=x,则PC=PA=x+1,在RtPOC中,由勾股定理,得x2+22=(x+1)2,解得
19、,x=,即OP=。(3)CHMAOC,MCH=CAO。(i)如图1,当H在点C下方时,MCH=CAO,CMx轴,yM=2。x2x2=2,解得x1=0(舍去),x2=1。M(1,2)。(ii)如图2,当H在点C上方时,MCH=CAO,PA=PC。由(2)得,M为直线CP与抛物线的另一交点,设直线CM的解析式为y=kx2,把P(,0)的坐标代入,得k2=0,解得k=。y=x2。由x2=x2x2,解得x1=0(舍去),x2=。此时y=。M()。在x轴上取一点D,如图3,过点D作DEAC于点E,使DE=,在RtAOC中,AC=。COA=DEA=90,OAC=EAD,AEDAOC,即,解得AD=2。D(
20、1,0)或D(3,0)。过点D作DMAC,交抛物线于M,如图则直线DM的解析式为:y=2x+2或y=2x6。当2x6=x2x2时,即x2+x+4=0,方程无实数根,当2x+2=x2x2时,即x2+x4=0,解得。 点M的坐标为()或()。【考点】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,勾股定理,平行的判定和性质,相似三角形的判定和性质,解一元二次方程。【分析】(1)根据与x轴的两个交点A、B的坐标,故设出交点式解析式,然后把点C的坐标代入计算求出a的值,即可得到二次函数解析式。 (2)设OP=x,然后表示出PC、PA的长度,在RtPOC中,利用勾股定理列式,然后解方程即可。(3
21、)根据相似三角形对应角相等可得MCH=CAO,然后分(i)点H在点C下方时,利用同位角相等,两直线平行判定CMx轴,从而得到点M的纵坐标与点C的纵坐标相同,是-2,代入抛物线解析式计算即可;(ii)点H在点C上方时,根据(2)的结论,点M为直线PC与抛物线的另一交点,求出直线PC的解析式,与抛物线的解析式联立求解即可得到点M的坐标。在x轴上取一点D,过点D作DEAC于点E,可以证明AED和AOC相似,根据相似三角形对应边成比例列式求解即可得到AD的长度,然后分点D在点A的左边与右边两种情况求出OD的长度,从而得到点D的坐标,再作直线DMAC,然后求出直线DM的解析式,与抛物线解析式联立求解即可
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 天津市佳春中学中考数学复习 二次函数的应用几何问题 天津市 中学 中考 数学 复习 二次 函数 应用 几何 问题
限制150内