【2013版中考12年】江苏省苏州市2002-2013年中考数学试题分类解析 专题12 押轴题.doc
《【2013版中考12年】江苏省苏州市2002-2013年中考数学试题分类解析 专题12 押轴题.doc》由会员分享,可在线阅读,更多相关《【2013版中考12年】江苏省苏州市2002-2013年中考数学试题分类解析 专题12 押轴题.doc(61页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【2013版中考12年】江苏省苏州市2002-2013年中考数学试题分类解析 专题12 押轴题一、选择题1.(江苏省苏州市2002年3分)如图,O的内接ABC的外角ACE的平分线交O于点D。DFAC,垂足为F,DEBC,垂足为E。 给出下列4个结论: CE=CF,ACB=EDF ,DE是O的切线,。其中一定成立的是【 】A. B. C. D. DE不是O的切线。错误。 【只有当OCF=0,即AC是圆的直径时,DE才是O的切线。同样可证,当圆心O在ABC内时,ODE=900OCF900,DE也不是O的切线。】如图,连接AD,BD。根据圆内接四边形的外角等于内对角得DCE=DAB,又DCE=DCF
2、,DCA=DBA,DAB=DBA900。 综上所述,正确。故选D。2.(江苏省苏州市2003年3分)如图,已知ABC中,AB=AC,BAC=900,直角EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点E、F,给出以下四个结论:(1)AE=CF;(2)EPF是等腰直角三角形;(3);(4)EFAP。当EPF在ABC内绕顶点P旋转时(点E不与A、B重合),上述结论中始终正确的有【 】A. 1个 B. 2个 C. 3个 D. 4个 。(3)正确。(4)EF不一定是中位线,EF不一定等于BC。 又AP=BC,EFAP不一定成立。(4)错误。综上所述,始终正确的是。故选C。3.(江苏省苏州市
3、2004年3分)如图,梯形ABCD的对角线交于点O,有以下四个结论:AOBCOD ;AODACB; 。 其中,始终正确的有【 】A 1个 B 2个 C 3个 D 4个4.(江苏省苏州市2005年3分)下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大
4、。其中,你认为正确的见解有【 】A1个 B2个 C3个 D4个5.(江苏省苏州市2006年3分)对左下方的几何体变换位置或视角,则可以得到的几何体是【 】 A. B. C. D.6.(江苏省苏州市2007年3分)如图,小明作出了边长为1的第1个正A1B1C1,算出了正A1B1C1的面积。然后分别取A1B1C1的三边中点A2、B2、C2,作出了第2个正A2B2C2,算出了正A2B2C2的面积。用同样的方法,作出了第3个正A3B3C3,算出了正A3B3C3的面积,由此可得,第10个正A10B10C10的面积是【 】A B C D 7.(江苏省苏州市2008年3分)如图AB为O的直径,AC交O于E点
5、,BC交O于D点,CD=BD,C=70现给出以下四个结论: A=45; AC=AB: ; CEAB=2BD2其中正确结论的序号是【 】A B C D8.(江苏省2009年3分)下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;第个数:那么,在第10个数、第11个数、第12个数、第13个数中,最大的数是【 】A第10个数B第11个数C第12个数D第13个数9.(江苏省苏州市2010年3分)如图,已知、两点的坐标分别为(2,0)、(0,2),的圆心坐标为(1,0),半径为1若是上的一个动点,线段与轴交于点,则面积的最小值是【 】 A2 B1 C D10.(江苏省苏州市2011年3分
6、)如图,已知A点坐标为(5,0),直线与y轴交于点B,连接AB,a=75,则b的值为【 】A3 B C4 D【答案】B。【考点】一次函数,特殊角三角函数值。【分析】根据三角函数求出点B的坐标,即可求得b的值:由可知,k=1,故在OAB中,OBA,。故选B。11. (2012江苏苏州3分)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x轴上若正方形A1B1C1D1的边长为1,B1C1O=60,B1C1B2C2B3C3,则点A3到x轴的距离是【 】A. B. C. D. 根据题意得出:WC3 Q=30,C3 WQ=60,
7、A3 WF=30,WQ=,FW=WA3cos30=。点A3到x轴的距离为:FW+WQ=。故选D。12.(2013年江苏苏州3分)如图,在平面直角坐标系中,RtOAB的顶点A在x轴的正半轴上,顶点B的坐标为(3,),点C的坐标为(,0),点P为斜边OB上的一动点,则PAPC的最小值为【】A B C D2 PAPC的最小值为。故选B。二、填空题1.(江苏省苏州市2002年2分)设有反比例函数,、为其图象上的两点,若时,则的取值范围是 2. (江苏省苏州市2003年2分)如图,已知1=2,若再增加一个条件就能使结论 “ABDE=ADBC”成立,则这个条件可以是 _。3. (江苏省苏州市2004年3分
8、)正方形网格中,小格的顶点叫做格点。小华按下列要求作图:在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;连结三个格点,使之构成直角三角形。小华在左边的正方形网格中作出了RtABC。请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等。【答案】作图如下(答案不唯一):4.(江苏省苏州市2005年3分)如图,直角坐标系中一条圆弧经过网格点A、B、C,其中,B点坐标为,则该圆弧所在圆的圆心坐标为 。圆心。则圆心是(2,0),如图所示:5.(江苏省苏州市2006年3分)如图直角坐标系中,ABC的顶点都在网格点上其中,A点坐标为
9、(2,一1),则ABC的面积为 平方单位6.(江苏省苏州市2007年3分)如图,将纸片ABC沿DE折叠,点A落在点A处,已知1+2=100,则A的大小等于 度7.(江苏省苏州市2008年3分)初三数学课本上,用“描点法”画二次函数的图象时列了如下表格:2101242 根据表格上的信息同答问题:该二次函数在=3时,y= 8. (江苏省2009年3分)如图,已知是梯形ABCD的中位线,DEF的面积为,则梯形ABCD的面积为 cm29. (江苏省苏州市2010年3分)如图,已知A、B两点的坐标分别为、(0,2),P是AOB外接圆上的一点,且AOP=45,则点P的坐标为 10. (江苏省苏州市2011
10、年3分)如图,已知点A的坐标为(,3),ABx轴,垂足为B,连接OA,反比例函数(k0)的图象与线段OA、AB分别交于点C、D若AB3BD,以点C为圆心,CA的倍的长为半径作圆,则该圆与x轴的位置关系是 (填“相离”、“相切”或“相交”)11. (2012江苏苏州3分)如图,在梯形ABCD中,ADBC,A=60,动点P从A点出发,以1cm/s的速度沿着ABCD的方向不停移动,直到点P到达点D后才停止.已知PAD的面积S(单位:)与点P移动的时间t(单位:s)的函数关系式如图所示,则点P从开始移动到停止移动一共用了 秒(结果保留根号).12.(2013年江苏苏州3分)如图,在矩形ABCD中,点E
11、是边CD的中点,将ADE沿AE折叠后得到AFE,且点F在矩形ABCD内部将AF延长交边BC于点G若,则 (用含k的代数式表示) 【答案】。【考点】折叠问题,矩形的性质,折叠的对称性质,全等三角形的判定和性质,勾股定理,二次根式化简,待定系数法的应用。【分析】如图,连接EG, ,设,则。 三、解答题1. (江苏省苏州市2002年7分)已知:与外切于点,过点的直线分别交、于点、,的切线交于点、,为的弦, (1)如图(1),设弦交于点,求证:;(2)如图(2),当弦绕点旋转,弦的延长线交直线B于点时,试问:是否仍然成立?证明你的结论。2.(江苏省苏州市2002年7分)如图,梯形OABC中,O为直角坐
12、标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3)。点P、Q同时从原点出发,分别作匀速运动。其中点P沿OA向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动。当这两点中有一点到达自己的终点时,另一点也停止运动。 (1)设从出发起运动了秒,如果点Q的速度为每秒2个单位,试分别写出这时点Q在OC上或在CB上时的坐标(用含的代数式表示,不要求写出的取值范围); (2)设从出发起运动了秒,如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半。 试用含的代数式表示这时点Q所经过的路程和它的速度; 试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部
13、分?如有可能,求出相应的的值和P、Q的坐标;如不可能,请说明理由。 OQ=(143105),即OQ=16。 点Q所经过的路程为16, 速度为。 不能。理由如下:当Q点在OC上时,如图,过点Q作QFOA于点F。 则OP=,QF= 。又,令,解之,得。当时,这时点Q不在OC上,故舍去; 当时,这时点Q不在OC上,故舍去。当Q点在OC上时,PQ不可能同时把梯形OABC的面积也分成相等的两部分。3. (江苏省苏州市2003年7分)如图1,O的直径为AB,过半径OA的中点G作弦CEAB,在上取一点D,分别作直线CD、ED,交直线AB于点F、M。(1)求COA和FDM的度数;(2)求证:FDMCOM;(3
14、)如图2,若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M。试判断:此时是否仍有FDMCOM?证明你的结论。【答案】解:(1)AB为直径,CEAB,CG=EG。在RtCOG中,OG=OC,OCG=30。COA=60。又CDE的度数=的度数= 的度数=COA的度数=60,FDM=180CDE=120。4. (江苏省苏州市2003年7分)OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴上,点C在y轴上,OA=10,OC=6。(1)如图1,在OA上选取一点G,将COG沿CG翻折,使点O落在BC边上,记为E,求折痕CG所在直线的解析式。(
15、2)如图2,在OC上选取一点D,将AOD沿AD翻折,使点O落在BC边上,记为。求折痕AD所在直线的解析式;再作FAB,交AD于点F,若抛物线过点F,求此抛物线的解析式,并判断它与直线AD的交点的个数。(3)如图3,一般地,在OC、OA上选取适当的点,使纸片沿翻折后,点O落在BC边上,记为。请你猜想:折痕所在直线与中的抛物线会有什么关系?用(1)中的情形验证你的猜想。5. (江苏省苏州市2004年7分)某中学为筹备校庆活动,准备印制一批校庆纪念册。该纪念册每册需要10张8K大小的纸,其中4张为彩页,6张为黑白页。印制该纪念册的总费用由制版费和印刷费两部分组成,制版费与印数无关,价格为:彩页300
16、元/张,黑白页50元/张;印刷费与印数的关系见下表。印数a (单位:千册)1a55a10彩色 (单位:元/张)2.22.0黑白(单位:元/张)0.70.6(1)印制这批纪念册的制版费为 元;(2)若印制2千册,则共需多少费用?(3)如果该校希望印数至少为4千册,总费用至多为60 000元,求印数的取值范围。(精确到0。01千册)6.(江苏省苏州市2004年8分)如图,平面直角坐标系中,四边形OABC为矩形,点A、B的坐标分别为(3,0),(3,4)。动点M、N分别从O、B同时出发,以每秒1个单位的速度运动。其中,点M沿OA向终点A运动,点N沿BC向终点C运动。过点N作NPAC,交AC于P,连结
17、MP。已知动点运动了x秒。(1)P点的坐标为( , );(用含x的代数式表示)(2)试求MPA面积的最大值,并求此时x的值。(3)请你探索:当x为何值时,MPA是一个等腰三角形?你发现了几种情况?写出你的研究成果。【答案】解:(1)3x ; x 。【考点】二次函数综合题,勾股定理,待定系数法,直线上点的坐标与方程的关系,二次函数的最值,等腰三角形的判定和性质。【分析】(1)由题意可知C(0,4),A(3,0),所以由待定系数法可求出直线AC解析式为:y=x+4。因为P点的横坐标与N点的横坐标相同为3x,代入直线AC中得y=x,所以P点坐标为(3x,x)。(2)通过求MPA的面积和x的函数关系式
18、来得出MPA的面积最大值及对应的x的值。(3)可分MP=AP,AP=AM,MP=MA三种情况进行讨论即可。7.(江苏省苏州市2005年7分)苏州地处太湖之滨,有丰富的水产养殖资源,水产养殖户李大爷准备进行大闸蟹与河虾的混合养殖,他了解到如下信息:每亩水面的年租金为500元,水面需按整数亩出租;每亩水面可在年初混合投放4公斤蟹苗和20公斤虾苗;每公斤蟹苗的价格为75元,其饲养费用为525元,当年可获1400元收益;每公斤虾苗的价格为15元,其饲养费用为85元,当年可获160元收益;(1)若租用水面亩,则年租金共需_元;(2)水产养殖的成本包括水面年租金、苗种费用和饲养费用,求每亩水面蟹虾混合养殖
19、的年利润(利润=收益成本);(3)李大爷现在奖金25000元,他准备再向银行贷不超过25000元的款,用于蟹虾混合养殖。已知银行贷款的年利率为8%,试问李大爷应该租多少亩水面,并向银行贷款多少元,可使年利润超过35000元?李大爷应该租10亩水面,并向银行贷款24000元,可使年利润超过35000元。【考点】一元一次不等式的应用【分析】(1)年租金=每亩水面的年租金亩数。(2)年利润=收益成本=(蟹苗收益虾苗收益)(蟹苗成本虾苗成本)水面年租金饲养总费用(3)设应该租n亩水面,并向银行贷款x元,可使年利润超过35000元。依题意,有年内总成本为: 4900n25000x;向银行贷款不超过250
20、00元:;年利润超过35000元:。解之即得所求。8(江苏省苏州市2005年8分)如图一,平面直角坐标系中有一张矩形纸片OABC,O为坐标原点,A点坐标为(10,0),C点坐标为(0,6)。D是BC边上的动点(与点B、C不重合),现将COD沿OD翻折,得到FOD;再在AB边上选取适当的点E,将BDE沿DE翻折,得到GDE,并使直线DG、DF重合。(1)如图二,若翻折后点F落在OA边上,求直线DE的函数关系式;(2)设,求关于的函数关系式,并求的最小值;(3)一般地,请你猜想直线DE与抛物线的公共点的个数,在图二的情形中通过计算验证你的猜想;如果直线DE与抛物线始终有公共点,请在图一中作出这样的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013版中考12年 【2013版中考12年】江苏省苏州市2002-2013年中考数学试题分类解析 专题12 押轴题 2013 中考 12 江苏省 苏州市 2002 年中 数学试题 分类 解析 专题
链接地址:https://www.taowenge.com/p-45476880.html
限制150内