第五讲线性代数中的数值计算问题精选文档.ppt
《第五讲线性代数中的数值计算问题精选文档.ppt》由会员分享,可在线阅读,更多相关《第五讲线性代数中的数值计算问题精选文档.ppt(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第五讲线性代数中的数值计算问题本讲稿第一页,共三十二页【引例引例】求下列三阶线性代数方程组的近似解MATLAB程序为:A=2-5 4;1 5-2;-1 2 4b=5;6;5x=Abx=2.7674 1.1860 1.3488本讲稿第二页,共三十二页在MATLAB命令窗口,先输入下列命令构造系数矩阵A和右端向量b:A=2-5 4;1 5-2;-1 2 4A=2 -5 4 1 5 -2 -1 2 4b=5;6;5b=5 6 5然后只需输入命令x=Ab即可求得解x:x=Abx=2.7674 1.1860 1.3488本讲稿第三页,共三十二页一、特殊矩阵的实现本讲稿第四页,共三十二页1.零零矩矩阵阵:
2、所有元素值为零的矩阵称为零矩阵。零矩阵可以用zeros函数实现。zeros是MATLAB内部函数,使用格式如下:zeros(m):产生m阶零矩阵;zeros(m,n):产生m*n阶零矩阵,当m=n时同上;zeros(size(A):产生与矩阵A同样大小的零矩阵。一、特殊矩阵的实现常见的特殊矩阵有零矩阵、幺矩阵、单位矩阵、三角形矩阵等,这类特殊矩阵在线性代数中具有通用性;还有一类特殊矩阵在专门学科中有用,如有名的希尔伯特(Hilbert)矩阵、范德蒙(Vandermonde)矩阵等。本讲稿第五页,共三十二页2.幺矩阵幺矩阵:所有元素值为1的矩阵称为幺矩阵。幺矩阵可以用ones函数实现。它的调用格
3、式与zeros函数一样。【例例1 1】试用ones分别建立3*2阶幺矩阵、和与前例矩阵A同样大小的幺矩阵。用ones(3,2)建立一个3*2阶幺阵:ones(3,2)%一个3*2阶幺阵ans=1 1 1 1 1 1一、特殊矩阵的实现本讲稿第六页,共三十二页3.单单位位矩矩阵阵:主对角线的元素值为1、其余元素值为0的矩阵称为单位矩阵。它可以用MATLAB内部函数eye建立,使用格式与zeros相同。4.数数量量矩矩阵阵:主对角线的元素值为一常数d、其余元素值为0的矩阵称为数量矩阵。显然,当d=1时,即为单位矩阵,故数量矩阵可以用eye(m)*d或eye(m,n)*d建立。一、特殊矩阵的实现本讲稿
4、第七页,共三十二页一、特殊矩阵的实现5.对对角角阵阵:对角线的元素值为常数、其余元素值为0的矩阵称为对角阵。我们可以通过MATLAB内部函数diag,利用一个向量构成对角阵;或从矩阵中提取某对角线构成一个向量。使用格式为diag(V)和diag(V,k)两种。设V为具有m个元素的向量,diag(V)将产生一个m阶对角阵,其主对角线的元素值即为向量的元素值;diag(V,k)将产生一个n(n=m+|k|,k为一整数)阶对角阵,其第k条对角线的元素值即为向量的元素值。注意:当k0,则该对角线位于主对角线的上方第k条;当k0,该对角线位于主对角线的下方第|k|条;当k=0,则等同于diag(V)。用
5、diag建立的对角阵必是方阵。本讲稿第八页,共三十二页一、特殊矩阵的实现【例例2 2】已知向量v,试建立以向量v作为主对角线的对角阵A;建立分别以向量v作为主对角线两侧的对角线的对角阵B和C。MATLAB程序如下:v=1;2;3;%建立一个已知的向量vA=diag(v)A=1 0 0 0 2 0 0 0 3B=diag(v,1)B=0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0C=diag(v,-1)C=0 0 0 0 1 0 0 0 0 2 0 0 0 0 3 0本讲稿第九页,共三十二页6.从矩阵中提取某对角线我们也可以用diag从矩阵中提取某对角线构成一个向量。设A为m*n
6、阶矩阵,diag(A)将从矩阵A中提取其主对角线产生一个具有min(m,n)个元素的向量。diag(A,k)的功能是:当k0,则将从矩阵A中提取位于主对角线的上方第k条对角线构成一个具有n-k个元素的向量;当k0,则将从矩阵A中提取位于主对角线的下方第|k|条对角线构成一个具有m+k个元素的向量;当k=0,则等同于diag(A)。一、特殊矩阵的实现本讲稿第十页,共三十二页【例例3】已知矩阵A,试从矩阵A分别提取主对角线及它两侧的对角线构成向量B、C和D。MATLAB程序如下:A=1 2 3;4 5 6;%建立一个已知的23阶矩阵A%按各种对角线情况构成向量B、C和DB=diag(A)B=1 5
7、C=diag(A,1)C=2 6D=diag(A,-1)D=4一、特殊矩阵的实现本讲稿第十一页,共三十二页7.上三角阵:使用格式为triu(A)、triu(A,k)设A为m*n阶矩阵,triu(A)将从矩阵A中提取主对角线之上的上三角部分构成一个m*n阶上三角阵;triu(A,k)将从矩阵A中提取主对角线第|k|条对角线之上的上三角部分构成一个m*n阶上三角阵。注意:这里的k与diag(A,k)的用法类似,当k0,则该对角线位于主对角线的上方第k条;当k0,该对角线位于主对角线的下方第|k|条;当k=0,则等同于triu(A)一、特殊矩阵的实现本讲稿第十二页,共三十二页例例4 4】试分别用tr
8、iu(A)、triu(A,1)和、triu(A,-1)从矩阵A提取相应的上三角部分构成上三角阵B、C和D。MATLAB程序如下:A=1 2 3;4 5 6;7 8 9;9 8 7;%构成各种情况的上三角阵B、C和DB=triu(A)B=1 2 3 0 5 6 0 0 9 0 0 0C=triu(A,1)D=triu(A,-1)一、特殊矩阵的实现本讲稿第十三页,共三十二页一、特殊矩阵的实现8.下三角阵:使用格式为tril(A)、tril(A,k)tril的功能是从矩阵A中提取下三角部分构成下三角阵。用法与triu相同。本讲稿第十四页,共三十二页9.空矩阵空矩阵在MATLAB里,把行数、列数为零的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第五 线性代数 中的 数值 计算 问题 精选 文档
限制150内