2010届高三物理一轮复习学案电磁感应 doc--高中物理 .doc
《2010届高三物理一轮复习学案电磁感应 doc--高中物理 .doc》由会员分享,可在线阅读,更多相关《2010届高三物理一轮复习学案电磁感应 doc--高中物理 .doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网2010 届高三物理一轮复习学案:电磁感应教学目标教学目标1知道电磁感应现象,知道产生感应电流的条件。2会运用楞次定律和左手定则判断感应电流的方向。3会计算感应电动势的大小(切割法、磁通量变化法)。4通过电磁感应综合题目的分析与解答,深化学生对电磁感应规律的理解与应用,使学生在建立力、电、磁三部分知识联系的同时,再次复习力与运动、动量与能量、电路计算、安培力做功等知识,进而提高学生的综合分析能力。教学重点、难点分析教学重点、难点分析1楞次定律、法拉第电磁感应定律是电磁感应一章的重点。另外,电磁感应的规律也是自感、交流电、变压器等知
2、识的基础,因而在电磁学中占据了举足轻重的地位。2在高考考试大纲中,楞次定律、法拉第电磁感应定律都属 II 级要求,每年的高考试题中都会出现相应考题,题型也多种多样,在历年高考中,以选择、填空、实验、计算各种题型都出现过,属高考必考内容。同时,由电磁感应与力学、电学知识相结合的题目更是高考中的热点内容,题目内容变化多端,需要学生有扎实的知识基础,又有一定的解题技巧,因此在复习中要重视这方面的训练。3电磁感应现象及规律在复习中并不难,但是能熟练应用则需要适量的训练。关于楞次定律的推广含义、法拉第电磁感应定律在应用中何时用其计算平均值、何时要考虑瞬时值等问题都需通过训练来达到深刻理解、熟练掌握的要求
3、,因此要根据具体的学情精心选择一些针对性强、有代表性的题目组织学生分析讨论达到提高能力的目的。4电磁感应的综合问题中,往往运用牛顿第二定律、动量守恒定律、功能关系、闭合电路计算等物理规律及基本方法,而这些规律及方法又都是中学物理学中的重点知识,因此进行与此相关的训练,有助于学生对这些知识的回顾和应用,建立各部分知识的联系。但是另一方面,也因其综合性强,要求学生有更强的处理问题的能力,也就成为学生学习中的难点。5楞次定律、法拉第电磁感应定律也是能量守恒定律在电磁感应中的体现,因此,在研究电磁感应问题时,从能量的观点去认识问题,往往更能深入问题的本质,处理方法也更简捷,“物理”的思维更突出,对学生
4、提高理解能力有较大帮助,因而应成为复习的重点。教学过程设计教学过程设计一、电磁感应现象1产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。以上表述是充分必要条件。不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。这个表述是充分条件,不是必要的。在导体做切割磁感线运动时用它判定比较方便。2感应电动势产生的条件。感应电动势产生的条件是:穿过电路的磁通量发生变化。这里不要求闭合。无论电路闭合与否,
5、只要磁通量变化了,就一定有感应电动势产生。这好比一个电源:不论外电路是否闭合,电动势总是存在的。但只有当外电路闭合时,电路中才会有电流。3关于磁通量变化(1)在匀强磁场中,磁通量=BSsin(是 B 与 S 的夹角),磁通量的变化=2-1有多种形式,主要有:S、不变,B 改变,这时=BSsinB、不变,S 改变,这时=SBsinB、S 不变,改变,这时=BS(sin2-sin1)当 B、S、中有两个或三个一起变化时,就要分别计算1、2,再求2-1了。(2)在非匀强磁场中,磁通量变化比较复杂。有几种情况需要特别注意:如图所示,矩形线圈沿abc 在条形磁铁附近移动,试判断穿过线圈的磁通量如何变化?
6、如果线圈 M 沿条形磁铁轴线向右移动,穿过该线圈的磁通量如何变化?(穿过上边线圈的磁通量由方向向上减小到零,再变为方向向下增大;右边abcacbMNShttp:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网线圈的磁通量由方向向下减小到零,再变为方向向上增大)如图所示,环形导线 a 中有顺时针方向的电流,a 环外有两个同心导线圈 b、c,与环形导线 a 在同一平面内。当 a 中的电流增大时,穿过线圈 b、c 的磁通量各如何变化?在相同时间内哪一个变化更大?(b、c 线圈所围面积内的磁通量有向里的也有向外的,但向里的更多,所以总磁通量向里,a 中的电流增大时,总磁通量也向里增大。由于穿过
7、b 线圈向外的磁通量比穿过 c 线圈的少,所以穿过 b 线圈的磁通量更大,变化也更大。)如图所示,虚线圆 a 内有垂直于纸面向里的匀强磁场,虚线圆 a 外是无磁场空间。环外有两个同心导线圈 b、c,与虚线圆 a 在同一平面内。当虚线圆 a 中的磁通量增大时,穿过线圈 b、c 的磁通量各如何变化?在相同时间内哪一个变化更大?(与的情况不同,b、c 线圈所围面积内都只有向里的磁通量,且大小相同。因此穿过它们的磁通量和磁通量变化都始终是相同的。)二、楞次定律1楞次定律感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。楞次定律解决的是感应电流的方向问题。它关系到两个磁场:感应
8、电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。前者和后者的关系不是“同向”或“反向”的简单关系,而是前者“阻碍”后者“变化”的关系。在应用楞次定律时一定要注意:“阻碍”不等于“反向”,“阻碍”不是“阻止”。(1)从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。“阻碍”的不是磁感强度 B,也不是磁通量,而是阻碍穿过闭合回路的磁通量变化。(2)从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械
9、能减少。磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。(3)从“阻碍自身电流变化”的角度来看,就是自感现象。自感现象的应用和防止。应用:日光灯电路图及原理:灯管、镇流器和启动器的作用。防止:定值电阻的双线绕法。2右手定则。对一部分导线在磁场中切割磁感线产生感应电流的情况,右手定则和楞次定律的结论是完全一致的。这时,用右手定则更方便一些。3楞次定律的应用及其推广楞次定律强调的是感应电流的方向,感应电流的磁场阻碍原磁通量的变化。我们可将其含义推广为:感应电流对产生的原因(包括外磁场的变化、线圈面积的变化、相对位置的变化、导体中电流的变化等)都有阻碍作用。因此用推广含义考虑问题可以提
10、高运用楞次定律解题的速度和准确性。楞次定律的应用应该严格按以下四步进行:确定原磁场方向;判定原磁场如何变化(增大还是减小);确定感应电流的磁场方向(增反减同);根据安培定则判定感应电流的方向。【例题 1】如图所示,有两个同心导体圆环。内环中通有顺时针方向的电流,外环中原来无电流。当内环中电流逐渐增大时,外环中有无感应电流?方向如何?解:由于磁感线是闭合曲线,内环内部向里的磁感线条数和内环外部向外的所有磁感线条数相等,所以外环所围面积内(这里指包括内环圆面积在内的总面积,而不只是环形区域的面积)的总磁通量向里、增大,所以外环中感应电流磁场的方向为向外,由安培定则,外环中感应电流方向为逆时针。【例
11、题 2】如图所示,闭合导体环固定。条形磁铁 S 极向下以初速度 v0沿过导体环圆心的竖直线下落过程,导体环中的感应电流方向如何?解:从“阻碍磁通量变化”来看,当条形磁铁的中心恰好位于线圈 M 所在的水平面时,磁铁内部向上的磁感线都穿过了线圈,而磁铁外部向下穿过线圈的磁通量最少,所以此时刻穿过线圈 M 的磁通量最大。因此全过程中原磁场方向向上,先增后减,感应电流磁场方向先下后上,感应电流先顺时针后逆时针。从“阻碍相对运动”来看,线圈对应该是先排斥(靠近阶段)后吸引(远离阶段),把条形磁铁等效为螺线管,该螺线管中的电流是从上向下看逆时针方向的,根据“同向电流互相吸引,反向电流互相排斥”,感应NSv
12、0Mabcbc220Vhttp:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网电流方向应该是先顺时针后逆时针的,与前一种方法的结论相同。【例题 3】如图所示,O1O2是矩形导线框 abcd 的对称轴,其左方有垂直于纸面向外的匀强磁场。以下哪些情况下 abcd 中有感应电流产生?方向如何?A将 abcd 以 cd 为轴转动 60B将 abcd 向右平移C将 abcd 以 ab 为轴转动 60D将 abcd 向纸外平移解:A、B 两种情况下原磁通量向外,减少,感应电流磁场向外,感应电流方向为 abcd。C、D两种情况下穿过 abcd 的磁通量没有发生变化,无感应电流产生。【例题 4】如图所
13、示装置中,cd 杆原来静止。当 ab 杆做如下那些运动时,cd 杆将向右移动?A向右匀速运动B向右加速运动C向左加速运动D向左减速运动解:.ab 匀速运动时,ab 中感应电流恒定,L1中磁通量不变,穿过 L2的磁通量不变化,L2中无感应电流产生,cd 保持静止,A 不正确;ab 向右加速运动时,L2中的磁通量向下,增大,通过 cd 的电流方向向下,cd 向右移动,B 正确;同理可得 C 不正确,D 正确。选 B、D【例题 5】如图所示,当磁铁绕 O1O2轴匀速转动时,矩形导线框(不考虑重力)将如何运动?解:本题分析方法很多,最简单的方法是:从“阻碍相对运动”的角度来看,导线框一定会跟随条形磁铁
14、同方向转动起来。如果不计一切摩擦阻力,最终导线框将和磁铁转动速度无限接近到可以认为相同;如果考虑摩擦阻力,则导线框的转速总比条形磁铁转速小些(线框始终受到安培力矩的作用,大小和摩擦力的阻力矩相等)。如果用“阻碍磁通量变化”来分析,结论是一样的,但是叙述要复杂得多。可见这类定性判断的题要灵活运用楞次定律的各种表达方式。【例题 6】如图所示,水平面上有两根平行导轨,上面放两根金属棒 a、b。当条形磁铁如图向下移动时(不到达导轨平面),a、b 将如何移动?解:若按常规用“阻碍磁通量变化”判断,则需要根据下端磁极的极性分别进行讨论,比较繁琐。而且在判定 a、b 所受磁场力时。应该以磁极对它们的磁场力为
15、主,不能以 a、b 间的磁场力为主(因为它们的移动方向由所受的合磁场的磁场力决定,而磁铁的磁场显然是起主要作用的)。如果注意到:磁铁向下插,通过闭合回路的磁通量增大,由=BS 可知磁通量有增大的趋势,因此 S 的相应变化应该是阻碍磁通量的增加,所以 a、b 将互相靠近。这样判定比较起来就简便得多。【例题 7】如图所示,绝缘水平面上有两个离得很近的导体环 a、b。将条形磁铁沿它们的正中向下移动(不到达该平面),a、b 将如何移动?解:根据 U=BS,磁铁向下移动过程中,B 增大,所以穿过每个环中的磁通量都有增大的趋势,由于 S 不可改变,为阻碍增大,导体环应该尽量远离磁铁,所以 a、b 将相互远
16、离。【例题 8】如图所示,在条形磁铁从图示位置绕 O1O2轴转动 90的过程中,放在导轨右端附近的金属棒 ab 将如何移动?解:无论条形磁铁的哪个极为 N 极,也无论是顺时针转动还是逆时针转动,在转动 90过程中,穿过闭合电路的磁通量总是增大的(条形磁铁内、外的磁感线条数相同但方向相反,在线框所围面积内的总磁通量和磁铁内部的磁感线方向相同且增大。而该位置闭合电路所围面积越大,总磁通量越小,所以为阻碍磁通量增大金属棒 ab 将向右移动。【例题 9】如图所示,a、b 灯分别标有“36V 40W”和“36V 25W”,闭合电键,调节 R,使 a、b 都正常发光。这时断开电键后重做实验:电键闭合后看到
17、的现象是什么?稳定后那只灯较亮?再断开电键,又将看到什么现象?解:重新闭合瞬间,由于电感线圈对电流增大的阻碍作用,a 将慢慢亮起来,而 b 立即变亮。这时 L 的作用相当于一个大电阻;稳定后两灯都正常发光,a 的额定功率大,所以较亮。这时 L 的作用相当于一只普通的电阻(就是该线圈的内阻);断开瞬间,由于电感线圈对电流减小的阻碍作用,通过 a 的电流将逐渐减小,a渐渐变暗到熄灭,而 abRL 组成同一个闭合回路,所以 b 灯也将逐渐变暗到熄灭,而且开始还会闪亮一下(因为原来有 IaIb),并且通过 b 的电流方向与原来的电流方向相反。这时 L 的作用相当于一个电源。(若将 a 灯的额定功率小于
18、 b 灯,则断开电键后 b 灯不会出现“闪亮”现象。)【例题 10】如图所示,用丝线将一个闭合金属环悬于 O 点,虚线左边有垂直于纸面向外的匀强磁场,而右边没有磁场。金属环的摆动会很快停下来。试解释这一现象。若整个空间都有垂直于纸面向外的匀adbcO1O2cadbL2L1O1O2ababO1aO2bOBabLRhttp:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网强磁场,会有这种现象吗?解:只有左边有匀强磁场,金属环在穿越磁场边界时(无论是进入还是穿出),由于磁通量发生变化,环内一定有感应电流产生。根据楞次定律,感应电流将会阻碍相对运动,所以摆动会很快停下来,这就是电磁阻尼现象。还可
19、以用能量守恒来解释:有电流产生,就一定有机械能向电能转化,摆的机械能将不断减小。若空间都有匀强磁场,穿过金属环的磁通量不变化,无感应电流,不会阻碍相对运动,摆动就不会很快停下来。【例题 11】如图所示,蹄形磁铁的 N、S 极之间放置一个线圈 abcd,磁铁和线圈都可以绕 OO轴转动,若磁铁按图示方向绕 OO轴转动,线圈的运动情况是:A俯视,线圈顺时针转动,转速与磁铁相同B俯视,线圈逆时针转动,转速与磁铁相同C线圈与磁铁转动方向相同,但开始时转速小于磁铁的转速,以后会与磁铁转速一致D线圈与磁铁转动方向相同,但转速总小于磁铁的转速师:本题目中由于磁铁转动,就使穿过线圈的磁感线数目发生变化(开始图转
20、时,U 从零增加),因而会产生感应电流,线圈因通有电流又受磁场的作用力(安培力)而转动。这样分析虽然正确,但较费时间。若应用楞次定律的推广意义来判断就省时多了。大家可以试试。具体地说,就是先要解决两个问题:引起 U 变化的原因是什么?由于“阻碍”这个“原因”,线圈表现出来的运动应是怎样的?(学生思考后回答)(设置这样的定向思维的提问,目的不是了解学生怎样解题,而是着重让学生体会楞次定律的推广含义的具体应用方法。学生很容易回答上述提问:引起 U 的变化原因是线圈转动,由于要“阻碍”转动,表现为线圈跟着磁铁同向转动,所以,可以排除选项 A)师:进一步推理,线圈由于阻碍铁相对线圈的转动而跟着转起来后
21、,线圈的转速能与磁铁一致吗?(回答:不会一致,若一致就不是阻碍而阻止了)师:楞次定律的核心是“阻碍”,让我们做出线圈转速小于磁铁转速的结论,因此可以排除选项 B。同时,线圈依靠磁铁对线圈施以安培力而跟着转起来后,始终两者转速都不会一样的。(为什么,这个推理请自己用反证法论证)其实这就是异步感应电动机的工作原理。答案:D【例题 12】如图,水平导轨上放着一根金属导体,外磁场竖直穿过导轨框。当磁感强度 B 减小时,金属棒将怎样运动?师:请大家不光会用楞次定律去分析,更要学会用楞次定律的推广含义去判断。本题中产生感应电流的原因是外磁场 B 的减少,使穿过回路的 U 减少。为阻碍 U 减少,应表现出回
22、路面积增大,所以可动的金属棒 ab 应向外运动。指点:本题的分析也可以用逆向思维方法推知感应电流的方向。由于阻碍磁通量 U,导体棒向右运动,作用在导体棒上的安培力方向一定向右,用左手定则可知导体棒中的感应电流方向一定是从 ba。【例题 13】如图所示,一闭合的铜环从静止开始由高处下落通过条形磁铁后继续下降,空气阻力不计,则在铜环的运动过程中,下列说法正确的是:A铜环在磁铁的上方时,环的加速度小于 g,在下方时大于 gB铜环在磁铁的上方时,加速度小于 g,在下方时也小于 gC铜环在磁铁的上方时,加速度小于 g,在下方时等于 gD铜环在磁铁的上方时,加速度大于 g,在下方时小于 g师:正确答案是
23、B。本题中引起铜环内产生感应电流的原因是铜环在磁铁的磁场中相对磁铁发生运动,使铜环内先增加后减少,铜环内产生感应电流,磁场对通有感应电流的铜环又施以磁场力。要判断磁场力的方向,还依赖于对磁铁周围的磁场空间分布的了解。但是用“阻碍引起感应电流的原因”来判断就简捷的多。由于铜环下落而产生感应电流,使铜环受到磁场力,而磁场力一定对铜环的下落起阻碍作用,使铜环下落速度增加得慢些,即gmFmga磁。【例题 14】如图所示,当磁铁竖直向下穿向水平面上的回路中央时(未达到导轨所在平面),架在导轨上的导体棒 P、Q将会怎样运动?(设导轨 M、N 光滑)P、Q 对导轨 M、N 的压力等于 P、Q 受的重力吗?师
24、:除了直接用楞次定律判断外,请用阻碍相对运动来分析。(经过上面几题的指导,学生肯定会判断。)生:由于磁铁靠近回路使回路中,则为使阻碍增加,P、Q 一定向回路内侧运动,即回路面积会缩小。另一方面,欲使回路阻碍磁铁向下靠近,回路应向下后退,但因“无路可退”而使回路与支承面,P、Q 与导轨之间都压得更紧!因此 P、Q 对导轨施加的压力大于 P、Q 受的重力。http:/ 永久免费组卷搜题网http:/ 永久免费组卷搜题网【例题 15】如图所示,MN 是一根固定的通电长直导线,电流方向向上。今将一金属线框 abcd 放在导线上,让线框的位置偏向导线的左边,两者彼此绝缘,当导线中的电流 I 突然增大时,
25、线框整体受力情况为:A受力向右B受力向左C受力向上D受力为零分析:首先判断由于电流 I 增大使穿过回路 abcd 的磁通量 U 增大还是减小。由于线框位置偏向导线左边,使跨在导线左边的线圈面积大于右边面积,线圈左边部分内磁感线穿出,右边部分内磁感线穿入,整个线框中的合磁通量是穿出的,并且随电流增大而增大。再用“阻碍磁通量变化”来考虑线框受磁场力而将要发生运动的方向。显然线框只有向右发生运动,才与阻碍合磁通量增加相符合,因此线框受的合磁场力应向右。正确选项为 A。说明;以上 5 个例题都可以按楞次定律的应用步骤去分析。而我们特意采用了楞次定律含义的推广:“阻碍使 U 变化的原因”去判断,意图是让
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2010届高三物理一轮复习学案电磁感应 doc-高中物理 2010 届高三 物理 一轮 复习 电磁感应 doc 高中物理
限制150内