江西省九江市实验中学高中数学 不等式的证明方法之三 反证法教案(无答案)新人教A版选修4-5.doc
《江西省九江市实验中学高中数学 不等式的证明方法之三 反证法教案(无答案)新人教A版选修4-5.doc》由会员分享,可在线阅读,更多相关《江西省九江市实验中学高中数学 不等式的证明方法之三 反证法教案(无答案)新人教A版选修4-5.doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、江西省九江市实验中学高中数学 不等式的证明方法之三 反证法(无答案)新人教A版选修4-5目的要求: 重点难点: 教学过程:一、引入:前面所讲的几种方法,属于不等式的直接证法。也就是说,直接从题设出发,经过一系列的逻辑推理,证明不等式成立。但对于一些较复杂的不等式,有时很难直接入手求证,这时可考虑采用间接证明的方法。所谓间接证明即是指不直接从正面确定论题的真实性,而是证明它的反论题为假,或转而证明它的等价命题为真,以间接地达到目的。其中,反证法是间接证明的一种基本方法。反证法在于表明:若肯定命题的条件而否定其结论,就会导致矛盾。具体地说,反证法不直接证明命题“若p则q”,而是先肯定命题的条件p,
2、并否定命题的结论q,然后通过合理的逻辑推理,而得到矛盾,从而断定原来的结论是正确的。利用反证法证明不等式,一般有下面几个步骤:第一步 分清欲证不等式所涉及到的条件和结论;第二步 作出与所证不等式相反的假定;第三步 从条件和假定出发,应用证确的推理方法,推出矛盾结果;第四步 断定产生矛盾结果的原因,在于开始所作的假定不正确,于是原证不等式成立。二、典型例题:例1、已知,求证:(且)例1、设,求证证明:假设,则有,从而 因为,所以,这与题设条件矛盾,所以,原不等式成立。例2、设二次函数,求证:中至少有一个不小于.证明:假设都小于,则 (1) 另一方面,由绝对值不等式的性质,有 (2) (1)、(2
3、)两式的结果矛盾,所以假设不成立,原来的结论正确。注意:诸如本例中的问题,当要证明几个代数式中,至少有一个满足某个不等式时,通常采用反证法进行。议一议:一般来说,利用反证法证明不等式的第三步所称的矛盾结果,通常是指所推出的结果与已知公理、定义、定理或已知条件、已证不等式,以及与临时假定矛盾等各种情况。试根据上述两例,讨论寻找矛盾的手段、方法有什么特点?例3、设0 a, b, c , (1 - b)c , (1 - c)a ,则三式相乘:ab (1 - a)b(1 - b)c(1 - c)a 又0 a, b, c 0,ab + bc + ca 0,abc 0,求证:a, b, c 0 证:设a 0, bc 0, 则b + c = -a 0 ab + bc + ca = a(b + c) + bc 0矛盾, 必有a 0 同理可证:b 0, c 0三、小结:四、练习:1、利用反证法证明:若已知a,b,m都是正数,并且,则 2、设0 a, b, c 0,且x + y 2,则和中至少有一个小于2。提示:反设2,2 x, y 0,可得x + y 2 与x + y 2矛盾。五、作业:3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 江西省九江市实验中学高中数学 不等式的证明方法之三 反证法教案无答案新人教A版选修4-5 江西省 九江市 实验 中学 高中数学 不等式 证明 方法 反证法 教案 答案 新人 选修
链接地址:https://www.taowenge.com/p-45580753.html
限制150内