广东省惠州市2020届高三数学第二次调研考试试题文含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《广东省惠州市2020届高三数学第二次调研考试试题文含解析.doc》由会员分享,可在线阅读,更多相关《广东省惠州市2020届高三数学第二次调研考试试题文含解析.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、广东省惠州市2020届高三数学第二次调研考试试题 文(含解析)注意事项:1.答题前,考生务必将自己的姓名、准考证号、座位号、学校、班级等考生信息填写在答题卡上。2.作答选择题时,选出每个小题答案后,用2B铅笔把答题卡上对应题目的答案信息点涂黑。如需改动,用橡皮擦干净后,再选涂其它答案,写在本试卷上无效。3.非选择题必须用黑色字迹签字笔作答,答案必须写在答题卡各题指定的位置上,写在本试卷上无效。一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合,那么( )A. B. C. D. 【答案】C【解析】【分析】首先解出集合所含的元素,再由集合
2、的交集运算的定义求解。【详解】,又 即,故选:C.【点睛】本题考查交集及其运算,熟练掌握交集的定义是解答本题的关键,属于基础题。2.已知复数满足(其中为虚数单位),则的共轭复数是( )A. B. C. D. 【答案】D【解析】【分析】把已知等式变形,利用复数代数形式的乘除运算化简,再由共轭复数的概念解答。【详解】,即的共轭复数为,故选:D.【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,属于基础题。3.若,且,则的值为( )A. B. C. D. 【答案】A【解析】【分析】由诱导公式可得,再根据平方关系计算出,之后利用二倍角的正弦公式即可得到答案。【详解】由题意,根据诱导公式得,又
3、因为且,所以,根据可得,所以,故选:A.【点睛】本题考查同角三角函数的基本关系及二倍角的正弦公式,属于基础题。4.我国古代有着辉煌的数学研究成果,其中的周髀算经、九章算术、海岛算经、孙子算经、缉古算经,有丰富多彩的内容,是了解我国古代数学的重要文献这5部专著中有3部产生于汉、魏、晋、南北朝时期某中学拟从这5部专著中选择2部作为“数学文化”校本课程学习内容,则所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为( )A. B. C. D. 【答案】D【解析】【分析】利用列举法,从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有10种情况,所选2部专著中至少有一部是汉、魏、
4、晋、南北朝时期专著的基本事件有9种情况,由古典概型概率公式可得结果.【详解】周髀算经、九章算术、海岛算经、孙子算经、缉古算经,这5部专著中有3部产生于汉、魏、晋、南北朝时期记这5部专著分别为,其中产生于汉、魏、晋、南北朝时期从这5部专著中选择2部作为“数学文化”校本课程学习内容,基本事件有共10种情况,所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的基本事件有,共9种情况,所以所选2部专著中至少有一部是汉、魏、晋、南北朝时期专著的概率为故选D【点睛】本题主要考查古典概型概率公式的应用,属于基础题,利用古典概型概率公式求概率时,找准基本事件个数是解题的关键,基本亊件的探求方法有 (1)枚举
5、法:适合给定的基本事件个数较少且易一一列举出的;(2)树状图法:适合于较为复杂的问题中的基本亊件的探求.在找基本事件个数时,一定要按顺序逐个写出:先,. ,再,.依次. 这样才能避免多写、漏写现象的发生.5.某工厂为了解产品的生产情况,随机抽取了100个样本。若样本数据,的方差为8,则数据,的方差为( )A. 8B. 15C. 16D. 32【答案】D【解析】分析】利用方差的性质,若的方差为,则的方差为,直接求解【详解】样本数据,的方差为8,所以数据,的方差为,故选:D.【点睛】本题考查方差的性质应用,若的方差为,则的方差为,属于基础题。6.以下三个命题:“”是“”的充分不必要条件;若为假命题
6、,则,均为假命题;对于命题:,使得;则是:,均有.其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】求出不等式的解集然后再判断两集合的关系,从而得出结论.用联结的两个命题,只要有一个为假则这个复合命题即为假.根据特称命题的否定为全称命题判断.【详解】不等式,解得或,所以,“”是“”的充分不必要条件.正确;若为假命题,则,至少有一个为假,故错误;命题:使得的否定为,均有.正确,故选:B.【点睛】本题考查充分必要条件的判断,简单逻辑联结词及含有一个量词的命题的否定,属于基础题。7.某几何体的三视图如图所示,其中主视图,左视图均是由三角形与半圆构成,俯视图由圆与
7、内接三角形构成,则该几何体的体积为( )A. B. C. D. 【答案】A【解析】该几何体是一个半球上面有一个三棱锥,体积为,故选A.8.已知双曲线,双曲线的左、右焦点分别为F1,F2,M是双曲线C2的一条渐近线上的点,且OMMF2,O为坐标原点,若,且双曲线C1,C2的离心率相同,则双曲线C2的实轴长是 ( )A. 32B. 4C. 8D. 16【答案】D【解析】【分析】求得双曲线C1的离心率,求得双曲线C2一条渐近线方程为y=x,运用点到直线的距离公式,结合勾股定理和三角形的面积公式,化简整理解方程可得a=8,进而得到双曲线的实轴长【详解】双曲线的离心率为,设F2(c,0),双曲线C2一条
8、渐近线方程为y=x,可得|F2M|=b,即有|OM|=a,由,可得ab=16,即ab=32,又a2+b2=c2,且=,解得a=8,b=4,c=4,即有双曲线的实轴长为16故选:D【点睛】本题考查双曲线的方程和性质,注意运用点到直线的距离公式和离心率公式,考查化简整理的运算能力,属于中档题9.已知直线是函数的一条对称轴,则( )A. B. 上单调递增C. 由的图象向左平移个单位可得到的图象D. 由的图象向左平移个单位可得到的图象【答案】D【解析】【分析】由正弦型函数的对称性,我们可以判断出选项A错误,由正弦型函数的单调性可以判断出选项B错误,根据正弦型函数的平移变换可以判断出选项C错误和选项D正
9、确.【详解】由题意可得:,据此可得:,令k=0可得:,选项A错误;函数的解析式为:,若,则,函数不具有单调性;由的图象向左平移个单位可得到的函数图象,选项C错误;由的图象向左平移个单位可得到的图象,选项D正确.本题选择D选项.【点睛】本题考查三角函数图象和性质的综合应用,熟练掌握正弦型函数的对称性及平移变换法则是解答本题的关键,属基础题.10.函数的图象大致是( )A. B. C. D. 【答案】B【解析】【分析】根据函数表达式,把分母设为新函数,首先计算函数定义域,然后求导,根据导函数的正负判断函数单调性,对应函数图像得到答案.【详解】设,则的定义域为.,当,单增,当,单减,则.则在上单增,
10、上单减,.选B.【点睛】本题考查了函数图像的判断,用到了换元的思想,简化了运算,同学们还可以用特殊值法等方法进行判断.11.已知数列的各项均为正数,若数列的前项和为5,则( )A. 119B. 121C. 120D. 122【答案】C【解析】依题意有,即数列是以首项,公差为的等差数列,故.,前项和,所以.点睛:本题主要考查递推数列求数列通项公式,考查裂项求和法.首先根据题目所给方程,原方程是分式的形式,先转化为整式,得到两个平方的差为常数的递推数列,根据这个递推数列可以得到数列是以首项,公差为的等差数列,即求出的通项公式,进而求得的通项公式,接着利用裂项求和法求得前项和,最后列方程解出的值.1
11、2.已知椭圆的短轴长为2,上顶点为,左顶点为,分别是椭圆的左、右焦点,且的面积为,点为椭圆上的任意一点,则的取值范围为( )A. B. C. D. 【答案】D【解析】分析: 由得椭圆的短轴长为,可得,可得,从而可得结果.详解:由得椭圆的短轴长为,解得,设,则,即, ,故选D.点睛:本题考查题意的简单性质,题意的定义的有意义,属于中档题. 求解与椭圆性质有关的问题时要结合图形进行分析,既使不画出图形,思考时也要联想到图形,当涉及顶点、焦点、长轴、短轴、等椭圆的基本量时,要理清它们之间的关系,挖掘出它们之间的内在联系.二、填空题:本题共4小题,每小题5分,共20分,其中第15题第一空3分,第二空2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省 惠州市 2020 届高三 数学 第二次 调研 考试 试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内