高中数学教学论文-数形结合思想在解题中的应用.doc
《高中数学教学论文-数形结合思想在解题中的应用.doc》由会员分享,可在线阅读,更多相关《高中数学教学论文-数形结合思想在解题中的应用.doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数形结合思想在解题中的应用知识要点:1数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。2所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想,实现数形结合,常与以下内容有关:(1)实数与数轴上的点的对应关系;(2)函数与图象的对应关系;(3)曲线与方程的对应关系;(4)以几何元素和几何条件为背景建立起来的概念,如三角函数等;(5)所给的等式或代数式的结构含有明显的几何意义。如等式。3纵观多年来的高考试题,巧
2、妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。4数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域、最值问题中,在三角函数解题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图见数想图,以开拓自己的思维视野。考点一:利用数形结合的方法解决有关方程和不等式问题:【例题分析】 例1. 若关于的方程的两根都在区间(1,3)内,求的取值范围。解:由的图象可知,要使两根都在区间(1,3)内,只需,同时成立,
3、解得,故说明:,其图象与轴交点的横坐标就是方程的根,根据函数图象的性质可以得出对应的方程情况。其他函数和方程也可以类似得出解决的方法。 例2. 已知,则方程的实根个数为( ) A. 1个B. 2个C. 3个D. 1个或2个或3个解:判断方程的根的个数就是判断图象的交点个数,画出两个函数图象,易知两图象只有两个交点,故方程有2个实根,选B。说明:数形结合法可以解决一些既不是无理方程,也不是二次或三次方程的其他方程或不等式,也就是超越方程或者不等式。例如本例题中的方程。考点二:利用数形结合法解决有关最大值最小值的问题 例3. 如果实数满足,则的最大值为( ) A. B. C. D. 解:等式有明显
4、的几何意义,它表示坐标平面上的一个圆,圆心为,半径,(如图),而则表示圆上的点与坐标原点(0,0)的连线的斜率,如此一来,该问题可转化为如下几何问题:动点在以(2,0)为圆心,以为半径的圆上移动,求直线的斜率的最大值,由下图可见,当点在第一象限,且与圆相切时,的斜率最大,经简单计算,得最大值为。 例4. 已知满足的最大值与最小值。解:对于二元函数在限定条件下求最值问题,常采用构造直线的截距的方法来求之。 令,原问题转化为:在椭圆上求一点,使过该点的直线斜率为3,且在轴上的截距最大或最小,由图形知,当直线与椭圆相切时,有最大截距与最小截距。 由,得,故的最大值为13,最小值为。例5. 求函数的值
5、域。几何法:的形式类似于斜率公式,表示过两点的直线的斜率。 由于点在单位圆上(见下图) 显然, 设过的圆的切线方程为,则有,解得 即 函数值域为考点三:利用数形结合法解决其它问题: 例6. 若集合,集合,且,则的取值范围为_。解:,显然,表示以(0,0)为圆心,以3为半径的圆在轴上方的部分,(如图),而则表示一条直线,其斜率,纵截距为,由图形易知,欲使,即是使直线与半圆有公共点,显然的最小逼近值为,最大值为,即 例7. 点是椭圆上一点,它到其中一个焦点的距离为2,为的中点,表示原点,则( )A. B. C. 4D. 8解:(1)设椭圆另一焦点为,(如下图),则而又注意到各为的中点是的中位线 (
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新高考数学资料 高考数学压轴冲刺 新人教A版数学 高中数学课件 高中数学学案 高考数学新题型 数学精品专题 数学模拟试卷 高考数学指导
限制150内