巧用基向量解立体几何题.doc
《巧用基向量解立体几何题.doc》由会员分享,可在线阅读,更多相关《巧用基向量解立体几何题.doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、巧用基向量解立体几何题摘 要:利用空间向量的坐标运算需先建立空间直角坐标系,但建立空间直角坐标系往往受到图形的制约,很难在立体几何问题中普遍使用,一般情况下, 我们可以根据题意在立体几何图形中选定一个基底,然后将所需的向量用此基底表示出来, 再利用向量的运算进行求解或证明, 这就是基底建模法。关键词:基向量、基底建模法、自由性向量是高中数学新教材中一项基本内容,它的引入有利于处理立体几何问题,有利于学生克服空间想象力的障碍和空间作图的困难,有利于丰富学生的思维结构,利用空间向量的坐标运算解立体几何问题,可把抽象的几何问题转化为代数计算问题,并具有很强的规律性和可操作性, 而利用空间向量的坐标运
2、算需先建立空间直角坐标系,但建立空间直角坐标系往往受到图形的制约,很难在立体几何问题中普遍使用,其实向量的坐标形式只是选取了特殊的基底,一般情况下, 我们可以根据题意在立体几何图形中选定一个基底,然后将所需的向量用此基底表示出来, 再利用向量的运算进行求解或证明, 这就是基底建模法, 它是利用向量的非坐标形式解立体几何问题的一种有效方法,并且应用广泛,下面本人将通过几个实例来加以具体说明, 供参考。引例:如图1,已知正四面体ABCD中,E、F分别在AB,CD上,且 , ,则直线DE和BF所成角的余弦值为( )A、 B、 C、 D、解析:可以以、为一组基向量。解: 设 , , ,则 , , ,又
3、设正四面体的棱长为4,则AE=1,CF=1,由余弦定理可得 ,同理 因为 , ,所以 所以又由异面直线所成角的定义,可知直线DE和BF成成的角的余弦值为 ,选A评注:引例的方法有如下特点:(1)当从一点出发的三条不共面的线段长度已知, 它们的夹角也已知时, 可选择这三条线段所代表的向量作为基向量, 然后求解;(2)当从一点出发的三条不共面的线段长度可求出, 它们的夹角也可求出时, 可选择这三条线段所代表的向量作为基向量, 然后求解。其实, 引例的方法是通常坐标法的推广, 因为当基底中任意两个都互相垂直, 且它们三个都是单位向量时, 即转入通常的空间直角坐标系的运算。当然如果基底中的任意两个向量
4、的夹角都不等于900时, 建立空间直角坐标系求解难度更大而利用引例的方法没有增加思维方法上的难度, 只是计算量稍微多一点而已,所以引例的这种方法是通性通法。例1:(08湖南)如图2,四棱锥P-ABCD的底面ABCD是边长为1的菱形,E是CD的中点,PA底面ABCD,PA2。图2()证明:平面PBE平面PAB,()求平面PAD和平面PBE所成二面角(锐角)的大小。解析:AP、AB、AD三线段长度已知,且 之间的夹角可求,故可以 作为基底(I)证明:以 为基底,则由题意有BAD60, 所以 ,而 所以 = = = =0所以 ,所以 ,又PA底面ABCD, ,所以 PAEB,而 ,所以EB面PAB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新高考数学资料 高考数学压轴冲刺 新人教A版数学 高中数学课件 高中数学学案 高考数学新题型 数学精品专题 数学模拟试卷 高考数学指导
限制150内