合理构造函数解导数问题.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《合理构造函数解导数问题.doc》由会员分享,可在线阅读,更多相关《合理构造函数解导数问题.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、合理构造函数解导数问题构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键,这里我们来一起探讨一下这方面问题。1山东省实验中学2009届高三第三次诊断考试(数学理)22已知函数 (注:)(1)若函数在上为增函数,求正实数的取值范围;(2)当时,若直线与函数的图象在上有两个不同交点,求实数的取值范围:(3)求证:对大于1的任意正整数解:(1)因为 所以依题意可得,对恒成立,所以 对恒成立,所以 对恒成立,即(2)当时,若,单调递减;若单调递增;故在处取得极小值,即最小值又所以要使直线与函数的图象在上有两个不同交点,
2、实数的取值范围应为,即;(3)当时,由可知,在上为增函数,当时,令,则,故,即所以故 相加可得又因为所以对大于1的任意正整书2【2007年山东理】 (22)(本小题满分14分)设函数,其中(I)当时,判断函数在定义域上的单调性;(II)求函数的极值点;福建数学网(III)证明对任意的正整数,不等式都成立【解】()由题意知,的定义域为,设,其图象的对称轴为,当时,即在上恒成立,当时,当时,函数在定义域上单调递增()由()得:当时,函数无极值点时,有两个相同的解,时, 时,时,函数在上无极值点当时,有两个不同解,时,即,福建数学网时,随的变化情况如下表:极小值由此表可知:时,有惟一极小值点,当时,
3、 ,此时,随的变化情况如下表:极大值极小值由此表可知:时,有一个极大值和一个极小值点;综上所述:时,有惟一最小值点;时,有一个极大值点和一个极小值点;时,无极值点()当时,函数,福建数学网令函数,则当时,所以函数在上单调递增,又 时,恒有,即恒成立故当时,有对任意正整数取,则有所以结论成立福建数学网 例1:(2009年宁波市高三第三次模拟试卷22题)已知函数.(1) 若为的极值点,求实数的值;(2) 若在上增函数,求实数的取值范围;(3) 若时,方程有实根,求实数的取值范围。解:(1)因为是函数的一个极值点,所以,进而解得:,经检验是符合的,所以 (2)显然结合定义域知道在上恒成立,所以且。同
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新高考数学资料 高考数学压轴冲刺 新人教A版数学 高中数学课件 高中数学学案 高考数学新题型 数学精品专题 数学模拟试卷 高考数学指导
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内