2021_2022学年高中数学第2章圆锥曲线与方程模块复习课第3课时圆锥曲线中的最值范围定点定值问题课后篇巩固提升含解析新人教A版选修2_1.docx
《2021_2022学年高中数学第2章圆锥曲线与方程模块复习课第3课时圆锥曲线中的最值范围定点定值问题课后篇巩固提升含解析新人教A版选修2_1.docx》由会员分享,可在线阅读,更多相关《2021_2022学年高中数学第2章圆锥曲线与方程模块复习课第3课时圆锥曲线中的最值范围定点定值问题课后篇巩固提升含解析新人教A版选修2_1.docx(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、模块复习课第3课时圆锥曲线中的最值、范围、定点、定值问题课后篇巩固提升1.已知椭圆C的短轴长为2,左、右焦点为F1、F2.椭圆C上一点与两焦点构成的三角形的周长为25+4.(1)求椭圆C的标准方程;(2)设P为椭圆C上一动点,求PF1PF2的取值范围.解(1)由题意可得2b=2,a2=b2+c2,2a+2c=25+4,解得a=5,b=1,c=2,故椭圆的方程为x25+y2=1.(2)设P(5cos,sin),F1(-2,0),F2(2,0),则PF1=(-2-5cos,-sin),PF2=(2-5cos,-sin),PF1PF2=5cos2-4+sin2=-3+4cos2.0cos21,-3-
2、3+4cos21,故PF1PF2的取值范围为-3,1.2.已知椭圆C:x2a2+y2b2=1(ab0)的离心率为22,焦点分别为F1,F2,点P是椭圆C上的点,PF1F2面积的最大值是2.(1)求椭圆C的方程;(2)设直线l与椭圆C交于M,N两点,点D是椭圆C上的点,O是坐标原点,若OM+ON=OD,判定四边形OMDN的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.解(1)由ca=22,bc=2,a2=b2+c2,解得a=2,b=c=2,得椭圆C的方程为x24+y22=1.(2)当直线l的斜率不存在时,直线MN的方程为x=-1或x=1,此时四边形OMDN的面积为6.当直线l的斜率存
3、在时,设直线l方程是y=kx+m,联立椭圆方程y=kx+m,x24+y22=1(1+2k2)x2+4kmx+2m2-4=0,=8(4k2+2-m2)0,x1+x2=-4km1+2k2,x1x2=2m2-41+2k2,y1+y2=k(x1+x2)+2m=2m1+2k2,|MN|=1+k2224k2+2-m21+2k2,点O到直线MN的距离是d=|m|1+k2,由OM+ON=OD,得xD=-4km1+2k2,yD=2m1+2k2,因为点D在曲线C上,所以有(-4km1+2k2)24+(2m1+2k2)22=1,整理得1+2k2=2m2.由题意四边形OMDN为平行四边形,所以四边形OMDN的面积为S
4、四边形OMDN=|MN|d=1+k2224k2+2-m21+2k2|m|1+k2=22|m|4k2+2-m21+2k2,由1+2k2=2m2得S四边形OMDN=6,故四边形OMDN的面积是定值,其定值为6.3.抛物线y2=2px(p0)与直线y=x+1相切,A(x1,y1),B(x2,y2)(x1x2)是抛物线上两个动点,F为抛物线的焦点,且|AF|+|BF|=8.(1)求p的值.(2)线段AB的垂直平分线l与x轴的交点是否为定点?若是,求出交点坐标;若不是,说明理由.(3)求直线l的斜率的取值范围.解(1)因为抛物线y2=2px(p0)与直线y=x+1相切,所以由y2=2px,y=x+1得y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 _2022 学年 高中数学 圆锥曲线 方程 模块 复习 课时 中的 范围 定点 问题 课后 巩固 提升 解析 新人 选修 _1
链接地址:https://www.taowenge.com/p-45853328.html
限制150内