第八章蒙特卡罗方法概述精选文档.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《第八章蒙特卡罗方法概述精选文档.ppt》由会员分享,可在线阅读,更多相关《第八章蒙特卡罗方法概述精选文档.ppt(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第八章蒙特卡罗方法概述本讲稿第一页,共三十五页第八章第八章 蒙特卡罗方法概述蒙特卡罗方法概述1.蒙特卡罗方法的基本思想蒙特卡罗方法的基本思想2.蒙特卡罗方法的收敛性,误差蒙特卡罗方法的收敛性,误差3.蒙特卡罗方法的特点蒙特卡罗方法的特点4.蒙特卡罗方法的主要应用范围蒙特卡罗方法的主要应用范围作作 业业本讲稿第二页,共三十五页第一章第一章 蒙特卡罗方法概述蒙特卡罗方法概述蒙特卡罗方法又称随机抽样技巧或统计试验方法。半个多世纪以来,由于科学技术的发展和电子计算机的发明,这种方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。蒙特卡罗方法是一种计算方法,但与一般数值计算方法有很大
2、区别。它是以概率统计理论为基础的一种方法。由于蒙特卡罗方法能够比较逼真地描述事物的特点及物理实验过程,解决一些数值方法难以解决的问题,因而该方法的应用领域日趋广泛。本讲稿第三页,共三十五页1.蒙特卡罗方法的基本思想蒙特卡罗方法的基本思想二十世纪四十年代中期,由于科学技术的发展和电子计算机的发明,蒙特卡罗方法作为一种独立的方法被提出来,并首先在核武器的试验与研制中得到了应用。但其基本思想并非新颖,人们在生产实践和科学试验中就已发现,并加以利用。两个例子例1.蒲丰氏问题例2.射击问题(打靶游戏)基本思想计算机模拟试验过程本讲稿第四页,共三十五页例1.蒲丰氏问题为了求得圆周率值,在十九世纪后期,有很
3、多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a(la)的平行线相交的频率代替概率P,再利用准确的关系式:求出值其中为投计次数,n为针与平行线相交次数。这就是古典概率论中著名的蒲丰氏问题。本讲稿第五页,共三十五页一些人进行了实验,其结果列于下表:实验者年份投计次数的实验值沃尔弗(Wolf)185050003.1596斯密思(Smith)185532043.1553福克斯(Fox)189411203.1419拉查里尼(Lazzarini)190134083.1415929本讲稿第六页,共三十五页例2.射击问题(打靶游戏)设r表示射击运动员的弹着点到靶心的距离,(r)
4、表示击中r处相应的得分数(环数),f(r)为该运动员的弹着点的分布密度函数,它反映运动员的射击水平。该运动员的射击成绩为用概率语言来说,是随机变量(r)的数学期望,即本讲稿第七页,共三十五页现假设该运动员进行了次射击,每次射击的弹着点依次为r1,r2,rN,则次得分g(r1),g(r2),g(rN)的算术平均值代表了该运动员的成绩。换言之,为积分的估计值,或近似值。在该例中,用次试验所得成绩的算术平均值作为数学期望的估计值(积分近似值)。本讲稿第八页,共三十五页基本思想由以上两个例子可以看出,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某
5、种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。这就是蒙特卡罗方法的基本思想。当随机变量的取值仅为1或0时,它的数学期望就是某个事件的概率。或者说,某种事件的概率也是随机变量(仅取值为1或0)的数学期望。本讲稿第九页,共三十五页因此,可以通俗地说,蒙特卡罗方法是用随机试验的方法计算积分,即将所要计算的积分看作服从某种分布密度函数f(r)的随机变量(r)的数学期望通过某种试验,得到个观察值r1,r2,rN(用概率语言来说,从分布密度函数f(r)中抽取个子样r1,r2,rN,),将相应的个随机变量的值g(r1),g(r2),g(rN)的算术平均值
6、作为积分的估计值(近似值)。本讲稿第十页,共三十五页为了得到具有一定精确度的近似解,所需试验的次数是很多的,通过人工方法作大量的试验相当困难,甚至是不可能的。因此,蒙特卡罗方法的基本思想虽然早已被人们提出,却很少被使用。本世纪四十年代以来,由于电子计算机的出现,使得人们可以通过电子计算机来模拟随机试验过程,把巨大数目的随机试验交由计算机完成,使得蒙特卡罗方法得以广泛地应用,在现代化的科学技术中发挥应有的作用。本讲稿第十一页,共三十五页计算机模拟试验过程计算机模拟试验过程,就是将试验过程(如投针,射击)化为数学问题,在计算机上实现。以上述两个问题为例,分别加以说明。例1.蒲丰氏问题例2.射击问题
7、(打靶游戏)由上面两个例题看出,蒙特卡罗方法常以一个“概率模型”为基础,按照它所描述的过程,使用由已知分布抽样的方法,得到部分试验结果的观察值,求得问题的近似解。本讲稿第十二页,共三十五页例蒲丰氏问题设针投到地面上的位置可以用一组参数(x,)来描述,x为针中心的坐标,为针与平行线的夹角,如图所示。任意投针,就是意味着x与都是任意取的,但x的范围限于0,a,夹角的范围限于0,。在此情况下,针与平行线相交的数学条件是针在平行线间的位置 本讲稿第十三页,共三十五页如何产生任意的(x,)?x在0,a上任意取值,表示x在0,a上是均匀分布的,其分布密度函数为:类似地,的分布密度函数为:因此,产生任意的(
8、x,)的过程就变成了由f1(x)抽样x及由f2()抽样的过程了。由此得到:其中1,2均为(0,1)上均匀分布的随机变量。本讲稿第十四页,共三十五页每次投针试验,实际上变成在计算机上从两个均匀分布的随机变量中抽样得到(x,),然后定义描述针与平行线相交状况的随机变量s(x,),为如果投针次,则是针与平行线相交概率的估计值。事实上,于是有本讲稿第十五页,共三十五页例射击问题设射击运动员的弹着点分布为用计算机作随机试验(射击)的方法为,选取一个随机数,按右边所列方法判断得到成绩。这样,就进行了一次随机试验(射击),得到了一次成绩(r),作次试验后,得到该运动员射击成绩的近似值环数78910概率0.1
9、 0.1 0.3 0.5本讲稿第十六页,共三十五页2.蒙特卡罗方法的收敛性,误差蒙特卡罗方法的收敛性,误差蒙特卡罗方法作为一种计算方法,其收敛性与误差是普遍关心的一个重要问题。收敛性误差减小方差的各种技巧效率本讲稿第十七页,共三十五页收敛性由前面介绍可知,蒙特卡罗方法是由随机变量X的简单子样X1,X2,XN的算术平均值:作为所求解的近似值。由大数定律可知,如X1,X2,XN独立同分布,且具有有限期望值(E(X)),则即随机变量X的简单子样的算术平均值,当子样数充分大时,以概率1收敛于它的期望值E(X)。本讲稿第十八页,共三十五页误差 蒙特卡罗方法的近似值与真值的误差问题,概率论的中心极限定理给
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第八 章蒙特卡罗 方法 概述 精选 文档
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内