【备战2013】高考数学 5年高考真题精选与最新模拟 专题13 统计 文.doc
《【备战2013】高考数学 5年高考真题精选与最新模拟 专题13 统计 文.doc》由会员分享,可在线阅读,更多相关《【备战2013】高考数学 5年高考真题精选与最新模拟 专题13 统计 文.doc(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【备战2013】高考数学 5年高考真题精选与最新模拟 专题13 统计 文【2012高考真题精选】1.【2012高考新课标文3】在一组样本数据(x1,y1),(x2,y2),(xn,yn)(n2,x1,x2,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,n)都在直线y=x+1上,则这组样本数据的样本相关系数为 (A)1 (B)0 (C) (D)12.【2012高考山东文4】 (4)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据都加2后所得数据,则A,B两样本的下列数字特征对应相同的是 (A)众数(B)
2、平均数(C)中位数(D)标准差3.【2012高考四川文3】交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查。假设四个社区驾驶员的总人数为,其中甲社区有驾驶员96人。若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数为( )A、101 B、808 C、1212 D、20124.【2012高考陕西文3】对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则改样本的中位数、众数、极差分别是 ( )A46,45,56 B46,45,53C47,45,56 D45,47,535.【
3、2012高考江西文6】小波一星期的总开支分布图如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为6.【2012高考湖南文5】设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg7.【2012高考湖北文2】容量为20的样本数据,分组后
4、的频数如下表则样本数据落在区间10,40的频率为A 0.35 B 0.45 C 0.55 D 0.65 8【2012高考广东文13由正整数组成的一组数据,其平均数和中位数都是,且标准差等于,则这组数据为 .(从小到大排列)9.【2012高考山东文14】右图是根据部分城市某年6月份的平均气温(单位:)数据得到的样本频率分布直方图,其中平均气温的范围是20.5,26.5,样本数据的分组为,.已知样本中平均气温低于22.5的城市个数为11,则样本中平均气温不低于25.5的城市个数为.形面积为0.1810.18,500.189.10.【2012高考浙江文11】某个年级有男生560人,女生420人,用分
5、层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为_.11.【2012高考湖南文13】图2是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为_.(注:方差,其中为x1,x2,xn的平均数)来12.【2012高考湖北文11】一支田径运动队有男运动员56人,女运动员42人。现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有_人。13.【2102高考福建文14】一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是_.14.
6、【2012高考江苏2】(5分)某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生【答案】15。【解析】分层抽样又称分类抽样或类型抽样。将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。因此,由知应从高二年级抽取15名学生。15.【2012高考安徽文18】(本小题满分13分)若某产品的直径长与标准值的差的绝对值不超过1mm 时,则视为合格品,否则视为不合格品。在近期一次产品抽样检查中,从
7、某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品。计算这50件不合格品的直径长与标准值的差(单位:mm), 将所得数据分组,得到如下频率分布表:分组频数频率-3, -2)0.10-2, -1)8(1,20.50(2,310(3,4合计501.00()将上面表格中缺少的数据填在答题卡的相应位置;()估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3内的概率;()现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品。据此估算这批产品中的合格品的件数。【解析】(I)分组频数频率-3, -2)0.1-2, -1)8(1,20.5(2,310(3,4
8、合计501()不合格品的直径长与标准值的差落在区间(1,3内的概率为,()合格品的件数为(件)。答:()不合格品的直径长与标准值的差落在区间(1,3内的概率为()合格品的件数为(件)16.【2012高考广东文17】(本小题满分13分)某校100名学生期中考试语文成绩的频率分布直方图如图4所示,其中成绩分组区间是:,. (1)求图中的值; (2)根据频率分布直方图,估计这100名学生语文成绩的平均分;(3)若这100名学生语文成绩某些分数段的人数()与数学成绩相应分数段的人数()之比如下表所示,求数学成绩在之外的人数.分数段【答案】【解析】(1)依题意得,解得。(2)这100名学生语文成绩的平均
9、分为:(分)。(3)数学成绩在的人数为:,【2011年高考真题精选】1. (2011年高考江西卷文科7)为了普及环保知识,增强环保意识,某大学随即抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为,众数为,平均值为,则( )A. B. C. D.【答案】D 【解析】计算可以得知,中位数为5.5,众数为5所以选D2. (2011年高考江西卷文科8)为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x(cm)174176176176178儿子身高y(cm)175175176177177则y对x的线性回归方程为A.y = x-1 B.y = x+1
10、C.y = 88+ D.y = 176【答案】C 【解析】线性回归方程,3. (2011年高考福建卷文科4)某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名。现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为A. 6 B. 8 C. 10 D.124. (2011年高考四川卷文科2)有一个容量为66的样本,数据的分组及各组的频数如下: 2 4 9 18 11 12 7 3根据样本的频率分布估计,大于或等于31.5的数据约占(A) (B) (C) (D) 答案:B解析:大于或等于31.5的数据所占的频数为12+7+3
11、=22,该数据所占的频率约为.5. (2011年高考陕西卷文科9)设 ,是变量和的次方个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论正确的是( ) (A) 直线过点(B)和的相关系数为直线的斜率(C)和的相关系数在0到1之间(D)当为偶数时,分布在两侧的样本点的个数一定相同 【答案】A【解析】由得又,所以则直线过点,故选A 6(2011年高考湖南卷文科5)通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由附表:0050001000013841663510828参照附表,得到的正确结论
12、是( )有99%以上的把握认为“爱好该项运动与性别有关”有99%以上的把握认为“爱好该项运动与性别无关”在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别有关”在犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别无关”答案:A解析:由,而,故由独立性检验的意义可知选A.7. (2011年高考山东卷文科13)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 .【答案】16【解析】由题意知,抽取比例为3:3:8:6,所以应在丙专业抽取的学生人数为40=
13、16.8 (2011年高考湖北卷文科11)某市有大型超市200家、中型超市400家,小型超市1400家,为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市 家.答案:20 解析:应抽取中型超市(家).9.(2011年高考江苏卷6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差10(2011年高考湖南卷文科18)(本题满分12分)某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关据统计,当X=70时,Y=460;X每增加10,Y增加5;已知近20年X的值为:140,110,
14、160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160(I)完成如下的频率分布表: 近20年六月份降雨量频率分布表降雨量70110140160200220频率(II)假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率11.(2011年高考辽宁卷文科19) (本小题满分12分) 某农场计划种植某种新作物为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验,选取两大块地,每大块地分成n小块地
15、,在总共2n小块地中随机选n小块地种植品种甲,另外n小块地种植品种乙 ()假设n=2,求第一大块地都种植品种甲的概率: ()试验时每大块地分成8小块即n=8,试验结束后得到品种甲和品种乙在各小块地上的每公顷产量(单位kghm2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x1,x2,xa的样本方差,其中为样本平均数。12.(2011年高考安徽卷文科20)(本小题满分10分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:年份20022004200620082010需求量(万吨)236246257276286()利用所给数
16、据求年需求量与年份之间的回归直线方程;()利用()中所求出的直线方程预测该地2012年的粮食需求量。温馨提示:答题前请仔细阅读卷首所给的计算公式及说明.【解析】()由所给数据可以看出,年需求量与年份之间的是近似直线上升,为此对数据预处理如下表:年份-2006-4-2024需求量-257-21-1101929【2010年高考真题精选】(2010陕西文数)4.如图,样本A和B分别取自两个不同的总体,它们的样本平均数分别为,样本标准差分别为sA和sB,则 (A) ,sAsB(B) ,sAsB(C) ,sAsB(D) ,sAsB答案:B解析:本题考查样本分析中两个特征数的作用10;A的取值波动程度显然
17、大于B,所以sAsB(2010重庆文数)(5)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为(A)7 (B)15 (C)25 (D)35答案:B解析:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为(2010四川文数)(4)一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是(
18、A)12,24,15,9 (B)9,12,12,7 (C)8,15,12,5 (D)8,16,10,6(2010安徽文数)(14)某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .【答案】【解析】该地拥有3套或3套以上住房的家庭可以估计有:户,所以所占比例的合理估计是.(2010重庆文数)(14
19、)加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、,且各道工序互不影响,则加工出来的零件的次品率为_ .解析:加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得加工出来的零件的次品率(2010福建文数)14 将容量为n的样本中的数据分成6组,绘制频率分布直方图。若第一组至第六组数据的频率之比为2:3:4:6:4:1,且前三组数据的频数之和等于27,则n等于 。【2009年高考真题精选】1( 2009广东文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1200编号,并按编号顺序平均分为40组(15号,610号,19
20、6200号)若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人 图 22(2009浙江文)某个容量为的样本的频率分布直方图如下,则在区间上的数据的频数为 答案:30 解析:对于在区间的频率/组距的数值为,而总数为100,因此频数为30 3( 2009广东文)(本小题满分13分)随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7 (1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差(3)现从乙班这10名同学中随机抽取两名身高不低于173cm的同学,求身高为176cm的同学被抽中的概率解析:(1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 备战2013 【备战2013】高考数学 5年高考真题精选与最新模拟 专题13 统计 备战 2013 高考 数学 年高 考真题 精选 最新 模拟 专题 13
限制150内