河南圣级名校2018_2019学年高二数学下学期期末考试试题理含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《河南圣级名校2018_2019学年高二数学下学期期末考试试题理含解析.doc》由会员分享,可在线阅读,更多相关《河南圣级名校2018_2019学年高二数学下学期期末考试试题理含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、河南省顶级名校2018-2019学年下期期末高二数学试题(理科)一、选择题。1.若复数z满足,则在复平面内,z对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】由复数的基本运算将其化为形式,z对应的点为【详解】由题可知,所以z对应的点为,位于第四象限。故选D.【点睛】本题考查复数的运算以及复数的几何意义,属于简单题。2.设i为虚数单位,则(xi)6的展开式中含x4的项为()A. 15x4B. 15x4C. 20ix4D. 20ix4【答案】A【解析】试题分析:二项式的展开式的通项为,令,则,故展开式中含的项为,故选A.【考点】二项展开式,复数的
2、运算【名师点睛】本题考查二项式定理及复数的运算,复数的概念及运算也是高考的热点,几乎是每年必考的内容,属于容易题.一般来说,掌握复数的基本概念及四则运算即可二项式可以写为,则其通项为,则含的项为3.以双曲线的焦点为顶点,离心率为的双曲线的渐近线方程是( )A. B. C. D. 【答案】D【解析】【分析】由题求已知双曲线的焦点坐标,进而求出值即可得答案。【详解】由题可知双曲线的焦点坐标为,则所求双曲线的顶点坐标为,即,又因为离心率为,所以,解得,所以,即,所以渐近线方程是 故选D【点睛】本题考查求双曲线的渐近线方程,解题的关键是判断出焦点位置后求得,属于简单题。4.把语文、数学、英语、物理、化
3、学这五门课程安排在一天的五节课中,如果数学必须比语文先上,则不同的排法有多少种( )A. 24B. 60C. 72D. 120【答案】B【解析】由题意,先从五节课中任选两节排数学与语文,剩余的三节任意排列,则有种不的排法.本题选择B选项.5.抛掷甲、乙两颗骰子,若事件A:“甲骰子的点数大于4”;事件B:“甲、乙两骰子的点数之和等于7”,则的值等于( )A. B. C. D. 【答案】C【解析】本小题属于条件概率所以事件B包含两类:甲5乙2;甲6乙1;所以所求事件的概率为6.下列说法:将一组数据中的每个数据都乘以同一个非零常数后,标准差也变为原来的倍;设有一个回归方程,变量增加个单位时,平均减少
4、个单位;线性相关系数越大,两个变量的线性相关性越强;反之,线性相关性越弱;在某项测量中,测量结果服从正态分布,若位于区域的概率为,则位于区域内的概率为 在线性回归分析中,为的模型比为的模型拟合的效果好;其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】【分析】逐个分析,判断正误。将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍;设有一个回归方程,变量增加个单位时,平均减少个单位;线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱;服从正态分布,则位于区域内的概率为;在线性回归分析中,为的模型比为的模型拟合的效果好。【
5、详解】将一组数据中的每个数据都乘以同一个非零常数后,标准差变为原来的倍,正确;设有一个回归方程,变量增加个单位时,平均减少个单位,正确;线性相关系数越大,两个变量的线性相关性越强;线性相关系数越接近于,两个变量的线性相关性越弱,错误;服从正态分布,则位于区域内的概率为,错误;在线性回归分析中,为的模型比为的模型拟合的效果好;正确故选C.【点睛】本题考查的知识点有标准差,线性回归方程,相关系数,正态分布等,比较综合,属于基础题。7.若,则的值为( )A. B. C. D. 【答案】A【解析】(a0+a2+a4)2(a1+a3)2 选A8.口袋中放有大小相等的2个红球和1个白球,有放回地每次摸取一
6、个球,定义数列,如果为数列前n项和,则的概率等于( )A. B. C. D. 【答案】B【解析】分析:由题意可得模球的次数为7次,只有两次摸到红球,由于每次摸球的结果数之间没有影响,利用独立性事件的概率乘法公式求解即可详解:由题意说明摸球七次,只有两次摸到红球,因为每次摸球的结果数之间没有影响,摸到红球的概率是,摸到白球的概率是所以只有两次摸到红球的概率是,故选B点睛:本题主要考查了独立事件的概率乘法公式的应用,其中解答中通过确定摸球次数,且只有两次摸到红球是解答的关键,着重考查了分析问题和解答问题的能力9.设抛物线的焦点为F,准线为l,P为抛物线上一点,垂足为A,如果为正三角形,那么等于(
7、)A. B. C. 6D. 12【答案】C【解析】【分析】设准线l 与轴交于点,根据抛物线的定义和APF为正三角形,这两个条件可以得出,在直角三角形中,利用正弦公式可以求出,即求出|PF|的长。【详解】设准线l 与轴交于点,所以,根据抛物线的定义和APF为正三角形,在中,所以|PF|等于6,故本题选C。【点睛】本题考查了抛物线的定义。10.已知三棱锥的体积为,且平面平面PBC,那么三棱锥外接球的体积为( )A. B. C. D. 【答案】D【解析】试题分析:取中点,连接,由知,则,又平面平面,所以平面,设,则,又,则,显然是其外接球球心,因此故选D考点:棱锥与外接球,体积11.已知,记为,中不
8、同数字个数,如:,则所有的的排列所得的的平均值为( )A. B. 3C. D. 4【答案】A【解析】【分析】由题意得所有的的排列数为,再分别讨论时的可能情况则均值可求【详解】由题意可知,所有的的排列数为,当时,有3种情形,即,;当时,有种;当时,有种,那么所有27个的排列所得的的平均值为.故选:A【点睛】本题考查排列组合知识的应用,考查分类讨论思想,考查推理论证能力和应用意识,是中档题12.若函数在上单调递增,则的取值范围是( )A. B. C. D. 【答案】C【解析】试题分析:对恒成立,故,即恒成立,即对恒成立,构造,开口向下的二次函数的最小值的可能值为端点值,故只需保证,解得故选C【考点
9、】三角变换及导数的应用【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解的关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,即注意正、余弦函数的有界性.二、填空题.13.设随机变量的概率分布列为,则.【答案】【解析】所有事件发生的概率之和为1,即P(=0)+P(=1)+P(=2)+P(=3)=1,c=, P(=k)=,P(=2)=故答案为14.某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相
10、互独立,那么该部件的使用寿命超过1000小时的概率为 【答案】【解析】设元件1,2,3的使用寿命超过1000小时的事件分别记为A,B,C,显然P(A)P(B)P(C),该部件的使用寿命超过1000的事件为(ABAB)C.该部件的使用寿命超过1000小时的概率为P.15.若定义在上的函数,则_【答案】【解析】由定积分几何意义可得,是以原点为圆心,以为半径的圆的面积的一半,故答案为.16.已知点P(0,1),椭圆+y2=m(m1)上两点A,B满足=2,则当m=_时,点B横坐标的绝对值最大【答案】5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m的函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 河南 名校 2018 _2019 学年 数学 学期 期末考试 试题 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内