人教案初中初三九年级数学下册-章末复习-名师教学教案-1.doc
《人教案初中初三九年级数学下册-章末复习-名师教学教案-1.doc》由会员分享,可在线阅读,更多相关《人教案初中初三九年级数学下册-章末复习-名师教学教案-1.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、努力!加油!章末复习【知识与技能】1.系统地回顾本章主要知识,能熟练运用本章知识 解决一些实际应用问题.2.进一步增强对反比例函数的图象及性质的理解,能运用它们解决具体问题.【过程与方法】经历“知识回顾问题与思考拓展应用”的过程,进一步增强学生概括能力,发展学生分析问题,解决问题能力.【情感态度】进一步增强学生的数学应用意识和数学应用能力,培养合作交流意识和探究能力,激发数学学习兴趣.【教学重点】反比例函数的图象及其性质的理解和运用.【教学难点】反比例函数图象中的面积不变性质. 一、知识框图,整体把握二、释疑解惑,加深理解1.反比例函数y= (0,为常数)的图象是怎样的?在描述反比例函数性质时
2、应注意哪些问题?你能解释原因吗?2.你能列举几个现实生活中应用反比例函 数的实例吗?【教学说明】知识回顾中结构图的构建应是师生共同回顾本章主要知识过程中教师结合实际所展示的一种框图,然后教师给出问题与思考,让学生在回顾本章知识后进行必要反思.学生可相互交流,共同探讨,获得结论,最后教师可根据问题进行评析.三、典例精析,复习新知例1(1)直角坐标系中有四个点P(2,6),Q(3,4),R(4,3)和S(5,1),其中三点在同一反比例函数的图象上,则不在这个图象上的点是 ( )A. P点 B.Q点 C. R点 D. S点(2)在反比例函数的图象上有A(x1 y1),B(x2,y2 )两点,当 x1
3、x20 时,y1y2,则的取值范围是( )A. 0 B. 0 C. D. 【分析】在(1)中,可结合反比例函数表达式y =知,即图象上点的横纵坐标之积是不变的,这样易知S点坐标(5,1)的横纵坐标之积与另三点不同,故知点S不在该反比例函数图象上;在(2)中,当x1x20时,有y1y2,知此双曲线的一支必在第二象限,从而有120,时,选D,这里需要让学生结合反比例函数的图象及其各自象限的增减性有较深刻认识才能快速准确获得结论.例2 如图,双曲线y =(k0,x0)经过 RtABO的直角边AB的中点D,已知直角边OB在x轴上,且ABO的面积为3,则k等于( )A3 B6 C.8 D.9【分析】例2
4、中可连OD,由D为AB边中点,故 .设D点坐标为( , ),点D在双曲线y = (k0,x0)上,故有= , ,又由SBOD= ,得 , ,故选A,事实上,双曲线上任一点向坐标轴作垂线, 垂足和原点所组成的三角形的面积是不变的,为 . 例3反比例函数y =(k0)与一次函数y=kx-k(k0)的图像在同一坐标系内的大致图象是( )【分析】本题可依据选项分别得到k值的范围,A、B选项中k值的取值范围各不相同,而C、D选项中直线与双曲线中k值大致相同,但 D选项中y= kx -k所表示的直线应交于y轴负半轴,从而知C选项是符合要求的大致图象.例4 已知反比例函数y = (为常数, ). (1)若点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教案 初中 初三 九年级 数学 下册 复习 名师 教学
限制150内