小学奥数知识点梳理1_数论.doc
《小学奥数知识点梳理1_数论.doc》由会员分享,可在线阅读,更多相关《小学奥数知识点梳理1_数论.doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、数论:1、奇偶;2、整除;3、余数;4、质数合数5、约数倍数;6、平方;7、进制;8、位值。一、 奇偶:一个整数或为奇数,或为偶数,二者必居其一。奇偶数有如下运算性质:(1)奇数奇数=偶数 偶数偶数=偶数 奇数偶数=奇数 偶数奇数=奇数(2)奇数个奇数的和(或差)为奇数;偶数个奇数的和(或差)为偶数,任意多个偶数的和(或差)总是偶数。(3)奇数奇数=奇数 偶数偶数=偶数 奇数偶数=偶数(4)若干个整数相乘,其中有一个因数是偶数,则积是偶数;如果所有的因数都是奇数,则积是奇数。(5)偶数的平方能被4整队,奇数的平方被4除余1。上面几条规律可以概括成一条:几个整数相加减,运算结果的奇偶性由算式中奇
2、数的个数所确定;如果算式中共有偶数(注意:0也是偶数)个奇数,那么结果一定是偶数;如果算式中共有奇数个奇数,那么运算结果一定是奇数。二、 整除:掌握能被30以下质数整除的数的特征。被2整除的数的特征为:它的个位数字之和可以被2整除.被3(9)整除的数的特征为:它的各位数字之和可以被3(9)整除。被5整除的数的特征为:它的个位数字之和可以被5整除。被11整除的数的特征是:它的奇位数字之和与偶位数字之和的差(大减小)能被11整除。下面研究被7、11、13整除的数的特征。有一关键性式子:71113=1001。判定某数能否被7或11或13整除,只要把这个数的末三位与前面隔开,分成两个独立的数,取它们的
3、差(大减小),看它是否被7或11或13整除。此法则可以连续使用。例:N=987654321.判定N是否被11整除。因为654不能被11整除,所以N不能被11整除。例:N215332.判定N是否被7、11、13整除。由于117139,所以117能被13整除,但不能被7、11整除,因此N能被13整除,不能被7、11整除。此方法的优点在于当判定一个较大的数能否被7或11或13整除时,可用减法把这个大数化为一个至多是三位的数,然后再进行判定。被17、19整除的简易判别法.回顾对比前面,由等式100171113的启发,才有简捷的“隔位相减判整除性”的方法。对于质数17:1759=1003,因此,判定一个
4、数可否被17整除,只要将其末三位与前面隔开,看末三位数与前面隔出数的3倍的差(大减小)是否被17整除。例:N=31428576,判定N能否被17整除。而429=2517+4,所以N不能被17整除。例:N2661027能否被17整除?又935=5517。所以N可被17整除。下面来推导被19整除的简易判别法。寻找关键性式子: 1953=1007.因此,判定一个数可否被19整除,只要将其末三位与前面隔开,看末三位与前面隔出数的7倍的差(大减小)是否被19整除。例:N123456789可否被19整除?又6033119+14,所以N不能被19整除。例:N=6111426可否被19整除?又57=319,所
5、以N可被19整除:32165419=6111426。下面来推导被23、29整除的简易判别法。寻找关键性式子,随着质数增大,简易法应该在N的位数多时起主要作用,现有2343510005,29345=10005,因此,判定一个数可否被23或29整除,只要将其末四位与前面隔开,看末四位与前面隔出数的5倍的差(大减小)是否被23或29整除。例:N6938801能否被23或29整除?又53362323223298,所以很快判出N可被23与29整除。三、余数三大余数定理:(1)余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。例如:23,16除以5的余数分别是3和
6、1,所以23+1639除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。例如:23,19除以5的余数分别是3和4,所以23+1942除以5的余数等于3+4=7除以5的余数为2(2)余数的减法定理a与b的差除以c的余数,等于a,b分别除以c的余数之差。例如:23,16除以5的余数分别是3和1,所以23167除以5的余数等于2,两个余数差312.当余数的差不够减时时,补上除数再减。例如:23,14除以5的余数分别是3和4,23149除以5的余数等于4,两个余数差为3544(3)余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积
7、,或者这个积除以c所得的余数。例如:23,16除以5的余数分别是3和1,所以2316除以5的余数等于313。当余数的和比除数大时,所求的余数等于余数之积再除以c的余数。例如:23,19除以5的余数分别是3和4,所以2319除以5的余数等于34除以5的余数,即2.乘方:如果a与b除以m的余数相同,那么与除以m的余数也相同(4)应用 :弃九法、同余定理应用一、弃九法原理在公元前9世纪,有个印度数学家名叫花拉子米,写有一本花拉子米算术,他们在计算时通常是在一个铺有沙子的土板上进行,由于害怕以前的计算结果丢失而经常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234除以9的余数为1
8、1898除以9的余数为818922除以9的余数为4678967除以9的余数为7178902除以9的余数为0这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式一定是错的。上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即如果这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数一定与等式右边和除以9的余数相同。而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的找并且划去,所 以这种方法被称作“弃九法”。所以我们总结出弃九法原理:任何一个整数模9同余
9、于它的各数位上数字之和。以后我们求一个整数被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用注意:弃九法只能知道原题一定是错的或有可能正确,但不能保证一定正确。例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是显然算式是错误的。但是反过来,如果一个算式一定是正确的,那么它的等式2两端一定满足弃九法的规律。这个思想往往可以帮助我们解决一些较复杂的算式谜问题。应用二、同余定理:若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:ab ( m
10、odm ),左边的式子叫做同余式。同余式读作:a同余于b,模m。同余定理重要性质与推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差一定能被m整除。例如:与除以的余数都是,所以能被整除(用式子表示为:如果有ab ( modm ),那么一定有abmk,k是整数,即m|(ab)余数判别法当一个数不能被另一个数整除时,虽然可以用长除法去求得余数,但当被除位数较多时,计算是很麻烦的建立余数判别法的基本思想是:为了求出“N被m除的余数”,我们希望找到一个较简单的数R,使得:N与R对于除数m同余由于R是一个较简单的数,所以可以通过计算R被m除的余数来求得N被m除的余数1) 整数N被2或5除的余
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 知识点 梳理 数论
限制150内