小学六年级数学总复习知识点归纳_(2).doc
《小学六年级数学总复习知识点归纳_(2).doc》由会员分享,可在线阅读,更多相关《小学六年级数学总复习知识点归纳_(2).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 . 小学六年级数学总复习知识点归纳一、 常用的数量关系式1、每份数份数总数 总数每份数份数 总数份数每份数2、1倍数倍数几倍数 几倍数1倍数倍数 几倍数倍数1倍数3、速度时间路程 路程速度时间 路程时间速度4、单价数量总价 总价单价数量 总价数量单价5、工作效率工作时间工作总量 工作总量工作效率工作时间 工作总量工作时间工作效率 6、加数加数和 和一个加数另一个加数7、被减数减数差 被减数差减数 差减数被减数8、因数因数积 积一个因数另一个因数9、被除数除数商 被除数商除数 商除数被除数 二、小学数学图形计算公式 1、正方形 C:周长 S:面积 a:边长周长边长4 C=4a面积=边长边长 S
2、=aa 2、正方体 V:体积 a:棱长 外表积=棱长棱长6 S表=aa6体积=棱长棱长棱长 V=aaa3、长方形 C:周长 S:面积 a:边长 周长=(长+宽)2 C=2(a+b)面积=长宽 S=ab4、长方体 V:体积 s:面积 a:长 b: 宽 h:高(1)外表积(长宽+长高+宽高)2 S=2(ab+ah+bh)(2)体积=长宽高 V=abh5、三角形 s:面积 a:底 h:高 面积=底高2 s=ah2三角形高=面积 2底 三角形底=面积 2高6、平行四边形 s:面积 a:底 h:高 面积=底高 s=ah7、梯形 s:面积 a:上底 b:下底 h:高 面积=(上底+下底)高2 s=(a+b
3、) h28、圆形 S:面积 C:周长 d=直径 r=半径 (1)周长=直径=2半径 C=d=2r (2)面积=半径半径9、圆柱体 v:体积 h:高 s:底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长高=ch(2r或d) (2)外表积=侧面积+底面积2 (3)体积=底面积高10、圆锥体 v:体积 h:高 s:底面积 r:底面半径 体积=底面积高311、总数总份数平均数14、相遇问题 相遇路程速度和相遇时间 相遇时间相遇路程速度和 速度和相遇路程相遇时间15、利润与折扣问题 利息本金利率时间 税后利息本金利率时间(15%)三、常用单位换算 1、长度单位换算 1千米=1000米1米=10
4、分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 2、体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 3、时间单位换算 1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911
5、月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时1时=60分 1分=60秒 1时=3600秒4、根本概念第一章 数和数的运算一 概念一整数1 整数的意义自然数和0都是整数。2 自然数我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用0表示。0也是自然数。3计数单位一个、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5数的整除整数a除以整数b(b 0,除得的商是整数而没有余数,我们就说a能被b
6、整除,或者说b能整除a 。如果数a能被数bb 0整除,a就叫做b的倍数,b就叫做a的约数或a的因数。倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12其中最小的倍数是3 ,没有最大的倍数。个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除
7、。一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。一个数的末两位数能被4或25整除,这个数就能被4或25整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。能被2整除的数叫做偶数。不能被2整除的数叫做奇数。0也是偶数。自然数按能否被2 整除的特征可分为奇数和偶数。一个数,如果只有1和它本身两个约数,这样的数叫做质数或素数,100以的质数有:2、3、5、7、11、13、17、19、23、29、3
8、1、37、41、43、47、53、59、61、67、71、73、79、83、89、97。一个数,如果除了1和它本身还有别的因数,这样的数叫做合数,例如 4、6、8、9、12都是合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=35,3和5 叫做15的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约
9、数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公约数,6是它们的最大公约数。公约数只有1的两个数,叫做互质数,成互质关系的两个数,有以下几种情况:1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。如果两个数是互质数,它们的最大公约数就是1。几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的
10、倍数有2、4、6 、8、10、12、14、16、18 3的倍数有3、6、9、12、15、18 其中6、12、18是2、3的公倍数,6是它们的最小公倍数。如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。二小数1 小数的意义把整数1平均分成10份、100份、1000份 得到的十分之几、百分之几、千分之几 可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几一个小数由整数局部、小数局部和小数点局部组成。数中的圆点叫做小数点,小数点左边的数叫
11、做整数局部,小数点左边的数叫做整数局部,小数点右边的数叫做小数局部。在小数里,每相邻两个计数单位之间的进率都是10。小数局部的最高分数单位“十分之一和整数局部的最低单位“一之间的进率也是10。2小数的分类纯小数:整数局部是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。带小数:整数局部不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。有限小数:小数局部的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都是有限小数。无限小数:小数局部的数位是无限的小数,叫做无限小数。 例如: 4.33 3.1415926 无限不循环小数:
12、一个数的小数局部,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。 例如:循环小数:一个数的小数局部,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。 例如: 3.555 0.0333 12.109109 一个循环小数的小数局部,依次不断重复出现的数字叫做这个循环小数的循环节。 例如: 3.99 的循环节是“ 9 , 0.5454 的循环节是“ 54 。纯循环小数:循环节从小数局部第一位开场的,叫做纯循环小数。 例如: 3.111 0.5656 混循环小数:循环节不是从小数局部第一位开场的,叫做混循环小数。 3.1222 0.03333 写循环小数的时候,为了简便,小数的循
13、环局部只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如: 3.777 简写作 0.5302302 简写作。三分数1 分数的意义把单位“1平均分成假设干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。把单位“1平均分成假设干份,表示其中的一份的数,叫做分数单位。2、分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。
14、带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3 约分和通分把一个分数化成同它相等但是分子、分母都比拟小的分数 ,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。四百分数1 表示一个数是另一个数的百分之几的数 叫做百分数,也叫做百分率 或百分比。百分数通常用%来表示。百分号是表示百分数的符号。二 方法一数的读法和写法1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿或“万字。每一级末尾的0都不读出来,其它数位连续有几个0都只读一个零。2. 整数的写法:从高位到低位,一级一
15、级地写,哪一个数位上一个单位也没有,就在那个数位上写0。3. 小数的读法:读小数的时候,整数局部按照整数的读法读,小数点读作“点,小数局部从左向右顺次读出每一位数位上的数字。4. 小数的写法:写小数的时候,整数局部按照整数的写法来写,小数点写在个位右下角,小数局部顺次写出每一个数位上的数字。5. 分数的读法:读分数时,先读分母再读“分之然后读分子,分子和分母按照整数的读法来读。6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。8. 百分数的写法:百分数通常不写成分数形式,而在原来的分
16、子后面加上百分号“%来表示。二数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万或“亿作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;改写成 以亿做单位 的数 12.543 亿。2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。3. 四舍五入法:要省略的尾数的最高位上的数
17、是4 或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略 345900 万后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。4. 大小比拟1. 比拟整数大小:比拟整数的大小,位数多的那个数就大,如果位数一样,就看最高位,最高位上的数大,那个数就大;最高位上的数一样,就看下一位,哪一位上的数大那个数就大。2. 比拟小数的大小:先看它们的整数局部,整数局部大的那个数就大;整数局部一样的,十分位上的数大的那个数就大;十分位上的数也一样的,百分位上的数大的那个数就大3. 比拟分数的大小:分母一样的分数,分子大的分
18、数比拟大;分子一样的数,分母小的分数大。分数的分母和分子都不一样的,先通分,再比拟两个数的大小。三数的互化1. 小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保存三位小数。3. 一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5 以外的质因数,这个分数就不能化成有限小数。4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5. 百分数化成小数:把百分数化成小数,只要把
19、百分号去掉,同时把小数点向左移动两位。6. 分数化成百分数:通常先把分数化成小数除不尽时,通常保存三位小数),再把小数化成百分数。7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。四数的整除1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是质数为止,再把除数和商写成连乘的形式。2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。3. 求几个数的最小公倍数的方法是:先用这几个数或其中的局部数的公约数去除,一直除到互质或两两互质为止,然后
20、把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。4. 成为互质关系的两个数:1和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有1时,这两个合数互质。五 约分和通分约分的方法:用分子和分母的公约数1除外去除分子、分母;通常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。三 性质和规律一商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小一样的倍,商不变。二小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。三小数点位置
21、的移动引起小数大小的变化1. 小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍3. 小数点向左移或者向右移位数不够时,要用“0补足位。四分数的根本性质分数的根本性质:分数的分子和分母都乘以或者除以一样的数零除外,分数的大小不变。五分数与除法的关系1. 被除数除数= 被除数/除数2. 因为零不能作除数,所以分数的分母不能为零。3. 被除数 相当于分子,除数相当于分母。四 运算的意义
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 小学 六年级 数学 复习 知识点 归纳
限制150内