线性代数课后习题答案全习题详解.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《线性代数课后习题答案全习题详解.docx》由会员分享,可在线阅读,更多相关《线性代数课后习题答案全习题详解.docx(77页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、线性代数课后习题答案全习题详解 ( 总 9 2 页)-本页仅作为文档封面,使用时请直接删除即可-内页可以根据需求调整合适字体及大小-第一章行列式1. 利用对角线法则计算下列三阶行列式:201abc111xyx + y(1) 1- 4-1 ;(2) bca ;(3)abc;(4)yx + yx.-183caba 2b2c2x + yxy解 (1)2011- 4-1 = 2 (-4) 3 + 0 (-1) (-1) + 11 8 - 0 1 3 - 2 (-1) 8 - 1 (-4) (-1)-183= - 24 + 8 + 16 - 4 = - 4abc(2) bca = acb + bac +
2、 cba - bbb - aaa - ccc = 3abc - a3 - b3 - c3cab111(3) abc = bc2 + ca2 + ab2 - ac2 - ba2 - cb2 = (a - b)(b - c)(c - a)a2 b2c2xyx + y13(4)yx + yx= x(x + y) y + yx(x + y) + (x + y) yx - y3 - (x + y)3 - x3x + yxy= 3xy(x + y) - y3 - 3x2 y - 3 y 2 x - x3 - y3 - x3= -2(x3 + y3 )2. 按自然数从小到大为标准次序,求下列各排列的逆序数:
3、(1)1234;(2)4132;(3)3421;(4)2413;(5)13(2n - 1)24 (2n) ;(6)13(2n - 1)(2n)(2n - 2)2.解(1)逆序数为 0(2)逆序数为 4:41,43,42,32(3)逆序数为 5:32,31,42,41,21(4)逆序数为 3:21,41,43(5)逆序数为 n(n - 1) :2321 个52,542 个72,74,763 个(2n - 1) 2, (2n - 1)(6)逆序数为n(n - 1)4, (2n - 1)6, (2n - 1)(2n - 2)(n -1) 个3252,541 个2 个(2n - 1) 2, (2n -
4、 1) 4, (2n - 1) 6, (2n - 1)(2n - 2)(n -1) 个421 个62,642 个(2n) 2, (2n) 4, (2n) 6, (2n) (2n - 2)(n -1) 个3. 写出四阶行列式中含有因子 a a11 23的项.解由定义知,四阶行列式的一般项为(-1)t aa1 p 2 p12aa3 p4 p34,其中t 为 p p p p1 2 3 4的逆序数由于 p1= 1, p2= 3 已固定, p p p p1 2 3 4只能形如13 ,即 1324 或 1342.对应的t 分别为0 + 0 + 1 + 0 = 1或0 + 0 + 0 + 2 = 2 - a
5、 a a a11 23 32 44和 a a a a11 23 34 42为所求.4. 计算下列各行列式: 41 2 4214 1- abacae 12 0 23 -1 2(1); (2)1 ; (3) bd- cdde ; (4)10 5 2 0123 2 bfcf- ef 01 1 7506 2 a-10 0解10b1-1c0-141001d 1 22 042c - c4-1122 -104- 1 - 104-1 1002(1) 10 5 2 0231032 -14 = 122 (-1)4+3 = 12- 201 1c - 7c7430010103- 1410314c + c23c + 1
6、 c991000- 2 =017 17 1412 3(2)214 1c - c3 -1 2 1214 03 -1 2 2214 0r - r3 -1 2 2214r - r3 -1 20123422123402123401123050625062214000002 =0- abacae- bce- 111(3) bd- cdde = adfb- ce = adfbce1- 11 = 4abcdefbfcf- efbc- e11- 1a10001 + aba0-1b10r + ar-1b100-1c1120-1c100-1d00-1d1 + aba0(4)= (-1)(-1)2+1-1c1c +
7、 dc1 + abaad1 + abad0-1 d32- 1c1 + cd = (-1)(-1)3+20- 10- 11 + cd = abcd + ab + cd + ad + 1a2abb25.证明:(1) 2a1a + b12b = (a - b)3 ;1ax + by ay + bz az + bxxyz(2) ay + bz az + bx ax + by = (a3 + b3 ) yzx ;az + bx ax + by ay + bzzxya2(3) b2c2d 2(a + 1)2(b + 1)2(c + 1)2(d + 1)2(a + 2)2(b + 2)2(c + 2)2(d
8、 + 2)2(a + 3)2(b + 3)2 = 0 ;(c + 3)2(d + 3)2(4) (4)1111abcd= (a - b)(a - c)(a - d )(b - c)(b - d ) (c - d )(a + b + c + d ) ;a4b4c4d 4x-10L000x-1L00(5) LLLLLL= xn + a xn-1 + L + ax + a .a2 b2c2d 2000Lx-1n-1n1aann-1aL an-22x + a1证明c - cc - c2131a2ab - a2b2 - a2ab - a2b2 - a2a b + a(1) 左边 =2ab - a2b -
9、 2a = (-1)3+1100= (a - b)3 = 右边b - a2b - 2a= (b - a)(b - a) 12(2) 左边按第一列分开x ay + bz az + bxy ay + bz az + bxa y az + bxax + by+ b zaz + bxax + byz ax + byay + bzxax + byay + bz分别再分x ay + bzzyzaz + bx分别再分xyzyzxa2 y az + bxx + 0 + 0 + b zx ax + bya3 yzx + b3 zxy zax + byyxy ay + bzzxyxyzxyzxyz= a3 yzx
10、 + b3 yzx (-1)2 = 右边zxyzxyc - cc - c21c - c3141a2a2 + (2a + 1)(a + 2)2(a + 3)2b2b2 + (2b + 1)(b + 2)2(b + 3)2c2c2 + (2c + 1)(c + 2)2(c + 3)2d 2d 2 + (2d + 1)(d + 2)2(d + 3)2a22a + 14a + 46a + 9b22b + 14b + 46b + 9c22c + 14c + 46c + 9d 22d + 14d + 46d + 9(3) 左边 =a2a4a + 46a + 9a21 4a + 46a + 9按第二列2 b
11、2 分成二项 c2b 4b + 4c 4c + 4d 2第一项c- 4cc - 6c3242第二项c- 4cc - 9c324210左边 =ab -a2a4b2 -b4 -d 4d + 46b + 9 + b26c + 9c26d + 9d 21 4b + 41 4c + 41 4d + 46b + 96c + 96d + 9a2ab2bc2cd 2d4 9a24 9 + b24 9c24 9d 21 4a 6a1 4b6b = 0 1 4c6c1 4d 6d00ac - ad - ab - ac - ad - a(4) (4)a2c2 - a2d 2 - a2 =b2 - a2c2 - a2
12、d 2 - a2a4c4 - a4d 4 - a4b2 (b2 - a2 ) c2 (c2 - a2 ) d 2 (d 2 - a2 )111= (b - a)(c - a)(d - a)b + ac + ad + ab2 (b + a) c2 (c + a) d 2 (d + a)100= (b - a)(c - a)(d - a) b + ac - bd - bb2 (b + a) c2 (c + a) - b2 (b + a) d 2 (d + a) - b2 (b + a)= (b - a)(c - a)(d - a)(c - b)(d - b) 11(c2 + bc + b2 ) +
13、 a(c + b) (d 2 + bd + b2 ) + a(d + b)= (a - b)(a - c)(a - d )(b - c)(b - d ) (c - d )(a + b + c + d )(5) 用数学归纳法证明x- 1当n = 2时, D = x2 + a x + a , 命题成立.2ax + a1221假设对于(n -1) 阶行列式命题成立,即Dn-1= xn-1 + a xn-2 + L + a1n-2x + a,n-1则D 按第1列展开 :n- 10L00x- 1 L00D = xDnn-1+ a (-1)n+1nL1L L L1LxL = xD- 1+ an-1n= 右
14、边所以,对于n 阶行列式命题成立.6. 设n 阶行列式 D = det(aij) ,把 D 上下翻转、或逆时针旋转90 o 、或依副对角线翻转,依次得aD = Mn11a11L a2Mnn , DL a1na= M1na11L aMnnL an1a, D =Mnn3an1L aM1n ,L a11证明 D = D12= (-1)n(n-1)2D, D3= D .证明Q D = det(a )ijLaL a111aL aaa n111nLaan1nnaL a212n D = MM= (-1)n-1 n1nn = (-1)n-1 (-1)n-2 aa= L1aL aMMn1nnMM111naL a
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 课后 习题 答案 详解
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内