人教案初中初二八年级数学下册---一次函数与方程、不等式-名师教学教案.doc
《人教案初中初二八年级数学下册---一次函数与方程、不等式-名师教学教案.doc》由会员分享,可在线阅读,更多相关《人教案初中初二八年级数学下册---一次函数与方程、不等式-名师教学教案.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、努力!加油!19.2.3 一次函数与方程、不等式【知识与技能】1.理解一次函数与方程、不等式的关系.2.会根据一次函数的图象解决一元一次方程、不等式、二元一次方程组的求解问题.【过程与方法】学习用函数的观点看待方程、不等式,初步感受用全面的观点处理局部问题的思想.【情感态度】经历方程、不等式与函数关系的探究,学习用联系的观点看待数学问题.【教学重点】一次函数与方程、不等式关系的应用.【教学难点】一次函数与方程、不等式关系的理解.一、情境导入,初步认识探究:1.解方程2x+20=0.2.在平面直角坐标系中画出一次函数y=2x+20的图象.问题1 直线y=2x+20与x轴交点横坐标是方程2x+20
2、=0的解吗?为什么?问题2 这两个问题是同一个问题么?由学生完成以上任务的画图与思考,教师走入每个学习小组,指导交流与总结,适时对学生的发言进行评判.【归纳总结】从“数”的角度看,方程2x+20=0的解是x=-10;从“形”的角度看,直线y=2x+20与x轴交点的坐标是(-10,0),这也说明,方程2x+20=0的解是x=-10.由于任何一个一元一次方程都可以转化为ax+b=0(a,b为常数,a0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应自变量的值,从图象上看,这相当于已知直线y=ax+b,确定它与x轴交点的横坐标的值.二、思考探究,获取新知问题1 一个物体现在的
3、速度是5m/s,其速度每秒增加2m/s,再过几秒它的速度为17m/s?思考:(1)本题的相等关系是什么?(2)设再过x秒物体速度为17m/s,能否列出方程?(3)如果速度用y表示,那么能否列出函数关系式?(4)上面不同的解法各有何特点?解法1 设再过x秒物体速度为17m/s.由题意可知:2x+5=17,解得x=6.解法2 速度y(m/s)是时间x(s)的函数,关系式为y=2x+5.当函数值为17时,对应的自变量x值可得2x+5=17.求得x=6.解法3 由2x+5=17可变形得到2x-12=0. 从图象上看,直线y=2x-12与x轴的交点为(6,0).故x=6.问题2 1.解不等式5x+63x
4、+10.【思考】不等式5x+63x+10可以转化为ax+b0的形式吗?所有的不等式是否都可以转化成这种形式呢?2.当自变量x为何值时函数y=2x-4的值大于0?【思考】上述两个问题是同一个问题吗?3.问题2能用一次函数图象说明吗?【教学说明】引导学生解不等式后思考问题,并师生共同归纳:(1)在问题1中,不等式5x+63x+10可以转化为2x-40,解这个不等式得x2.(2)解问题2就是要不等式2x-40,得出x2时函数y=2x-4的值大于0.因此它们是同一问题.(3)如图,函数y=2x-4与x轴的交点为(2,0),且这个函数的y随着x的增大而增大,故要求当函数y=2x-4的值大于0时的自变量的
5、值,只需在图中找出当函数图象在x轴上方时的x的值即可,由图可知,当x2时,函数y=2x-4的值大于0. 问题3 试用一次函数图象法求解从中总结你的体会.【归纳总结】上面的方程组可以转化为其本质是求当x为何值时,两个一次函数的y值相等,它反映在图象上,就是求直线与y=2x-1的交点坐标.三、典例精析,掌握新知例1 若直线y=kx+6与两坐标轴所围成的三角形面积是24,求常数k的值是多少?【分析】(1)一次函数的图象与两坐标轴围成的图形是直角三角形,两条直角边的长分别是图象与x轴的交点的横坐标的绝对值和与y轴的交点的纵坐标的绝对值.(2)确定图象与两条坐标轴的交点坐标可以通过令x=0和y=0解方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教案 初中 初二 八年 级数 下册 一次 函数 方程 不等式 名师 教学
限制150内