2022年最新人教版九年级数学下册第二十八章-锐角三角函数课时练习试题.docx
《2022年最新人教版九年级数学下册第二十八章-锐角三角函数课时练习试题.docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十八章-锐角三角函数课时练习试题.docx(33页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,点D为AB边的中点,连接CD,若,则的值为( )ABCD2、将矩形纸片ABCD按如图所示的方
2、式折起,使顶点C落在C处,若AB = 4,DE = 8,则sinCED为()A2BCD3、如图,小王在高台上的点A处测得塔底点C的俯角为,塔顶点D的仰角为,已知塔的水平距离ABa,则此时塔高CD的长为()Aasin+asin Batan+atan CD4、若tanA=2,则A的度数估计在( )A在0和30之间B在30 和45之间C在45和60之间D在60和90之间5、在RtABC中,C =90,sinA=,则cosA的值等于( )ABCD6、如图1所示,DEF中,DEF90,D30,B是斜边DF上一动点,过B作ABDF于B,交边DE(或边EF)于点A,设BDx,ABD的面积为y,图2是y与x之
3、间函数的图象,则ABD面积的最大值为( )A8B16C24D487、如图,PA、PB分别切O于A,B,APB60,O半径为2,则PB的长为( )A3B4CD8、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BHCE于F,交AC于G,交AD于H,下列说法:;点F是GB的中点;SAHG=SABC其中正确的结论的序号是( )ABCD9、如图,若要测量小河两岸相对的两点A,B的距离,可以在小河边取AB的垂线BP上的一点C,测得BC50米,ACB46,则小河宽AB为多少米()A50sin46B50cos46C50tan46D50tan4410、如图,在的正方形网格中,每个小正方形的边长均为1,
4、已知的顶点位于正方形网格的格点上,且,则满足条件的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、准备在一个“7”字型遮阳棚下安装一个喷水装置(如图1),已知遮阳棚DB与竖杆OB垂直,遮阳棚的高度OB3米,喷水点A与地面的距离OA1米(喷水点A喷出来的水柱呈抛物线型),水柱喷水的最高点恰好是遮阳棚的C处,C到竖杆的水平距离BC2米(如图2),此时水柱的函数表达式为_,现将遮阳棚BD绕点B向上旋转45(如图3),则此时水柱与遮阳棚的最小距离为_米(保留根号)2、比较大小:tan46_cos463、如图,在正方形中,对角线,相交于点O,点E在边上,且,连接交
5、于点G,过点D作,连接并延长,交于点P,过点O作分别交、于点N、H,交的延长线于点Q,现给出下列结论:;其中正确的结论有_(填入正确的序号)4、在正方形ABCD中,AB2,点E是BC边的中点,连接DE,延长EC至点F,使得EFDE,过点F作FGDE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是_tanGFBMNNC;S四边形GBEM5、如图公路桥离地面的高度AC为6米,引桥AB的水平宽度BC为24米,为降低坡度,现决定将引桥坡面改为AD,使其坡度为1:6,则BD的长_三、解答题(5小题,每小题10分,共计50分)1、如图,已知矩形ABCD(ABAD)(1)请用直尺和圆规按下
6、列步骤作图,保留作图痕迹:以点A为圆心,以AD长为半径画弧交边BC于点E,连接AE;在线段CD上作一点F,使得EFCBEA;连接EF(2)在(1)作出的图形中,若AB4,AD5,求tanDAF的值2、先化简,再求值:(1),其中x2tan603、如图1,已知抛物线yx2+x+1与x轴交于A和B两点(点A在点B的左侧),与y轴交于点C(1)点C的坐标是 ,点B的坐标是 ;(2)M为线段BC上方抛物线上一动点,连接MC、MB,求MBC面积的最大值,并求出此时M的坐标;(3)如图2,T为线段CB上一动点,将OCT沿OT翻折得到OCT,当OCT与OBC的重叠部分为直角三角形时,求BT的长(4)如图3,
7、动点P从点O出发沿x轴向B运动,过点P作CP的垂线交CB于D点P从O运动到B的过程中,点D运动所经过的路径总长等于 4、6tan230sin602tan455、如图,在平行四边形ABCD中,过点B作于E,连结AE,F为AE上一点,且(1)求证:(2)BF的长为_-参考答案-一、单选题1、D【分析】根据直角三角形斜边中线等于斜边一半求出AB,再根据三角函数的意义,可求出答案【详解】解:在ABC中,ACB90,点D为AB边的中点,ADBDCDAB,,又CD3,AB6,故选:D【点睛】本题考查直角三角形的性质和三角函数,理解直角三角形的边角关系是得出正确答案的前提2、B【分析】由折叠可知,CD=CD
8、=4,再根据正弦的定义即可得出答案【详解】解:纸片ABCD是矩形,CD=AB,C=90,由翻折变换的性质得,CD=CD=4,C=C=90,故选:B【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边3、B【分析】根据直角三角形锐角三角函数即可求解【详解】解:在中,在中,故选:B【点睛】本题考查了解直角三角形的应用仰角俯角问题,解题的关键是掌握直角三角形锐角三角函数4、D【分析】由题意直接结合特殊锐角三角函数值进行分析即可得出答案.【详解】解:,.故选:D.【点睛】本题考查特殊锐角三角函数值的应用,熟练掌握是解题的关键.5、A【分析】由三角函数的定义可知sinA=,可设
9、a=4,c=5,由勾股定理可求得b=3,再利用余弦的定义代入计算即可【详解】解:sinA=,可设a=4,c=5,由勾股定理可求得b=3,cosA=,故选:A【点睛】本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键6、C【分析】由图得点A到达点E时,面积最大,此时,由三角函数算出AB,由三角形面积公式即可求解【详解】由图可得:点A到达点E时,面积最大,此时,故选:C【点睛】本题考查二次函数图像问题以及解直角三角形,由题判断点A运动到哪里能使面积最大是解题的关键7、C【分析】根据题意连接OB、OP,根据切线长定理即可求得BPO=APB,在RtOBP中利用三角函数即可求解【详解】解:
10、连接OB、OP,PA、PB是O的切线,APB60,OBP=90,BPO=APB=30,O半径为2,即,,.故选:C.【点睛】本题考查切线的性质定理以及三角函数,根据题意正确构造直角三角形是解题的关键8、D【分析】先证明ABHBCE,得AH=BE,则,即,再根据平行线分线段成比例定理得:即可判断;设BF=x,CF=2x,则BC=x,计算FG= 即可判断;根据等腰直角三角形得:AC=AB,根据中得:即可判断;根据,可得同高三角形面积的比,然后判断即可【详解】解:四边形ABCD是正方形,AB=BC,HAB=ABC=90,CEBH,BFC=BCF+CBF=CBF+ABH=90,BCF=ABH,ABHB
11、CE,AH=BE,E是正方形ABCD边AB的中点,BE=AB,即AH/BC,故正确;设BF=x,CF=2x,则BC=x,AH=x,故不正确;四边形ABCD是正方形,AB=BC,ABC=90,AC=AB,故正确;,故正确故选D【点睛】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识点,灵活应用相关知识点成为解答本题的关键9、C【分析】根据三角函数的定义求解即可【详解】解:在中,米,故选:C,【点睛】此题考查了解直角三角形的应用,解题的关键是掌握三角函数的定义10、B【分析】先构造直角三角形,由求解即可得出答案【详解】A.,故此选项不符合题意;B.,故此选项符合
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 新人 九年级 数学 下册 第二 十八 锐角三角 函数 课时 练习 试题
限制150内