2021-2022学年京改版八年级数学下册第十五章四边形专题练习练习题.docx
《2021-2022学年京改版八年级数学下册第十五章四边形专题练习练习题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版八年级数学下册第十五章四边形专题练习练习题.docx(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、京改版八年级数学下册第十五章四边形专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、平行四边形中,则的度数是( )ABCD2、下列图标中,既是中心对称图形又是轴对称图形的是( )ABCD3、已知中,
2、CD是斜边AB上的中线,则的度数是( )ABCD4、下列图形中,既是中心对称图形,又是轴对称图形的个数是( )A1B2C3D45、下面图案中既是轴对称图形又是中心对称图形的是()ABCD6、古典园林中的窗户是中国传统建筑装饰的重要组成部分,一窗一姿容,一窗一景致下列窗户图案中,是中心对称图形的是( )ABCD7、在锐角ABC中,BAC60,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:NPMP;AN:ABAM:AC;BN2AN;当ABC60时,MNBC,一定正确的有( )ABCD8、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD9、如图,已知在正方形ABCD中,厘米
3、,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或210、如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E,若140,则2的度数为()A25B20C15D10第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,将矩形ABCD折叠,使点C与点A重合,折痕为EF若AF5,BF3,则AC的长为 _2、已知正方形ABCD的一条对角线长为2,则它的面积是_3、在平行四边形ABC
4、D中,BF平分ABC,交AD于点F,CE平分BCD,交AD于点E,AB=6,EF=2,则BC的长为_4、如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为 _5、若点P(m1,5)与点Q(3,n)关于原点成中心对称,则mn的值是_三、解答题(5小题,每小题10分,共计50分)1、如图,AOB是等腰直角三角形(1)若A(4,1),求点B的坐标;(2)ANy轴,垂足为N,BMy轴,垂足为点M,点P是AB的中点,连PM,求PMO度数;(3)在(2)的条件下,点Q是ON的中点,连PQ,求证:PQAM2、如图,ABC中,点D是边AC的中点,过D作直线PQBC,BCA的平分线交直线PQ于点E,点G是
5、ABC的边BC延长线上的点,ACG的平分线交直线PQ于点F求证:四边形AECF是矩形3、如图,将ABCD的边AB延长到点E,使BEAB,连接DE,交边BC于点F(1)求证:BEFCDF(2)连接BD,CE,若BFD2A,求证四边形BECD是矩形4、ABC和GEF都是等边三角形问题背景:如图1,点E与点C重合且B、C、G三点共线此时BFC可以看作是AGC经过平移、轴对称或旋转得到请直接写出得到BFC的过程迁移应用:如图2,点E为AC边上一点(不与点A,C重合),点F为ABC中线CD上一点,延长GF交BC于点H,求证:联系拓展:如图3,AB12,点D,E分别为AB、AC的中点,M为线段BD上靠近点
6、B的三等分点,点F在射线DC上运动(E、F、G三点按顺时针排列)当最小时,则MDG的面积为_5、如图,点E为矩形ABCD外一点,AE = DE.求证:ABEDCE-参考答案-一、单选题1、B【分析】根据平行四边形对角相等,即可求出的度数【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质2、B【分析】由题意直接根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得出答案【详解】解:A是轴对称图形,不是中心对称图形,故本选项不符合题意;B既是轴对称图形,又是中心对称图形,故本选项符合题意;C不是轴对称图形,是中心对称图形,故本选
7、项不符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:B【点睛】本题考查中心对称图形与轴对称图形的概念,注意掌握把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形3、B【分析】由题意根据三角形的内角和得到A=36,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论【详解】解:ACB=90,B=54,A=36,CD是斜边AB上的中线,CD=AD,ACD=A=36.故选:B【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握
8、直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键4、B【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解【详解】第一个图形是中心对称图形,又是轴对称图形,第二个图形是中心对称图形,又是轴对称图形,第三个图形不是中心对称图形,是轴对称图形,第四个图形不是中心对称图形,是轴对称图形,综上所述第一个和第二个图形既是中心对称图形,又是轴对称图形故选:B【点睛】点睛本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合5、D【分析】根据轴对称图形与中心对称图形的
9、概念求解【详解】A不是轴对称图形,也不是中心对称图形,故此选项不合题意;B是轴对称图形,不是中心对称图形,故此选项不合题意;C不是轴对称图形,是中心对称图形,故此选项不合题意;D既是轴对称图形又是中心对称图形,故此选项符合题意故选:D【点睛】本题考查了轴对称图形和中心对称图形;如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,则此图形是轴对称图形,这条直线叫做对称轴;如果一个图形绕某一固定点旋转180度后能够与原来的图形重合,则称这个图形是中心对称图形,固定的点叫对称中心;理解两个概念是解答本题的关键6、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故
10、此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心7、C【分析】利用直角三角形斜边上的中线的性质即可判定正确;利用含30度角的直角三角形的性质即可判定正确,由勾股定理即可判定错误;由等边三角形的判定及性质、三角形中位线定理即可判定正确【详解】CM、BN分别是高CMB、BNC均是直角三角形点P
11、是BC的中点PM、PN分别是两个直角三角形斜边BC上的中线故正确BAC=60ABN=ACM=90BAC=30AB=2AN,AC=2AMAN:AB=AM:AC=1:2即正确在RtABN中,由勾股定理得:故错误当ABC=60时,ABC是等边三角形CMAB,BNACM、N分别是AB、AC的中点MN是ABC的中位线MNBC故正确即正确的结论有故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键8、D【详解】解:A不是轴对称图形,是中心对称图形,故本选项不符合题意;B不是轴对称图形
12、,是中心对称图形,故本选项不符合题意;C是轴对称图形,不是中心对称图形,故本选项符合题意;D既是轴对称图形,又是中心对称图形,故本选项不符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合9、D【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 2022 学年 改版 八年 级数 下册 第十五 四边形 专题 练习 练习题
限制150内