《2013中考压轴题.doc》由会员分享,可在线阅读,更多相关《2013中考压轴题.doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2013年中考备考压轴题专项训练一、等腰三角形问题1如图,平面直角坐标系中,四边形为矩形,点的坐标分别为,动点分别从同时出发,以每秒1个单位的速度运动其中,点沿向终点运动,点沿向终点运动,过点作,交于,连结,已知动点运动了秒(1)点的坐标为(,)(用含的代数式表示);(2)试确定面积与x的关系式,最大值是多少?并求出S=1时相应的值;BAMPCO(3)当为何值时,是一个等腰三角形?简要说明理由2 如图,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120至OB的位置(1)求点B的坐标;(2)求经过点AO、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点
2、的三角形是等腰三角形?若存在,求点P的坐标;若不存在,说明理由3已知抛物线yax2bxc经过A(1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由4在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BEDB交x轴于点E(1)求经过点D、B、E的抛物线的解析式;(2)将DBE绕点B旋转一定的角度后,边
3、BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使PFE为等腰三角形,求Q点的坐标5如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8)抛物线y=ax2+bx过A、C两点 (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动速度均为每秒1个单位长度,运动时间为t秒过点P作PEAB交AC于点
4、E。过点E作EFAD于点F,交抛物线于点G当t为何值时,线段EG最长?连接EQ在点P、Q运动的过程中,判断有几个时刻使得CEQ是等腰三角形?请直接写出相应的t值 6. 已知:RtABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA0,n0),连接DP交BC于点E当BDE是等腰三角形时,直接写出此时点E的坐标又连接CD、CP,CDP是否有最大面积?若有,求出CDP的最大面的最大面积和此时点P的坐标;若没有,请说明理由二、平行四边形问题1如图,在平面直角坐标系中,抛物线y=x2+2x+3与x轴交于AB两点,与y轴交于点C,点D是该抛物线的顶点
5、(1)求直线AC的解析式及BD两点的坐标;(2)点P是x轴上一个动点,过P作直线lAC交抛物线于点Q,试探究:随着P点的运动,在抛物线上是否存在点Q,使以点AP、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由(3)请在直线AC上找一点M,使BDM的周长最小,求出M点的坐标2如图,抛物线y=x22x+c的顶点A在直线l:y=x5上(1)求抛物线顶点A的坐标;(2)设抛物线与y轴交于点B,与x轴交于点CD(C点在D点的左侧),试判断ABD的形状;(3)在直线l上是否存在一点P,使以点P、ABD为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在
6、,请说明理由3. 如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为8.(1)求该抛物线的解析式; (2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E.设PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.4在平面直角坐标系中,已知抛物线经过A,B,C三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动
7、点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标5已知:如图所示,关于的抛物线与轴交于点、点,与轴交于点(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点,使四边形为等腰梯形,写出点的坐标,并求出直线的解析式;BAOCyx(3)在(2)中的直线交抛物线的对称轴于点,抛物线上有一动点,轴上有一动点是否存在以为顶点的平行四边形?如果存在,请直接写出点的坐标;如果不存在,请说明理由6如图,抛物线与x轴交A、B两点(A
8、点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2AByxCPEO(1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由12如图,将一个边长为6的正方形OABC放置在平面直角坐标系中,O为原点。点P的横坐标是2,连接AP并延长,交BC的延长线于点D,而点M是对角线OB上一个动点,作MNOA交AD于点N,以MN为一边向下作正方形,设点
9、M的横坐标为x,它与OAP重叠部分的面积为S.(1)试求出点M在运动时,S与间x的关系式并求出自变量范围(2)在(1)的条件下,并求出S最大值;(3)当x为何值时,以MN为边的正方形与正方形OABC的重叠部分面积最大?此时该正方形面积大小是多少?ACBPQED14如图,在RtABC中,C=90,AC = 3,AB = 5点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止设点P、Q运动的时间是t秒(t0)(1)当t = 2时,AP = ,点Q到AC的距离是 ;(2)在点P从C向A运动的过程中,求APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值
限制150内