2021年高考数学真题和模拟题分类汇编专题14概率与统计含解析.docx
《2021年高考数学真题和模拟题分类汇编专题14概率与统计含解析.docx》由会员分享,可在线阅读,更多相关《2021年高考数学真题和模拟题分类汇编专题14概率与统计含解析.docx(78页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题14 概率与统计一、选择题部分1.(2021新高考全国卷T8)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A. 甲与丙相互独立B. 甲与丁相互独立C. 乙与丙相互独立D. 丙与丁相互独立【答案】B【解析】,故选B2.(2021新高考全国卷T9) 有一组样本数据,由这组数据得到新样本数据,其中(为非零常数,则()A. 两组样本数据的样本平均数相同B. 两组样本数据样本中位数相同C
2、. 两组样本数据的样本标准差相同D. 两组样数据的样本极差相同【答案】CD【解析】,故方差相同,C正确;由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,D正确;故选CD3.(2021高考全国甲卷理T2)为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%C. 估计该地农户家庭年收入的平均值不超过6.5万元D. 估计该地有一半以上的农户,其家庭年收入介于4
3、.5万元至8.5万元之间【答案】C【解析】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.该地农户家庭年收入低于4.5万元农户的比率估计值为,故A正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误.综上,给出结论中不正确的是C.故选:C.4.(2021高考全国甲卷理T10) 将4个1和2个0随机排成一行,则2个0不相邻的概率为()A. B. C. D. 【答案】C【
4、解析】采用插空法,4个1产生5个空,分2个0相邻和2个0不相邻进行求解.将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有种排法,若2个0不相邻,则有种排法,所以2个0不相邻的概率为.故选C.5.(2021高考全国乙卷文T7) 在区间随机取1个数,则取到的数小于的概率为()A. B. C. D. 【答案】B【解析】设“区间随机取1个数”,“取到的数小于”,所以故选:B6.(2021江苏盐城三模T9)已知X N(1,12),Y N(2,22),12,10,20,则下列结论中一定成立的有A若12,则P(|X1|1)P(|Y2|1)B若12,则P(|X1|1)P(|Y2
5、|1)C若12,则P(X2)P(Y1)1D若12,则P(X2)P(Y1)1【答案】AC【考点】正态分布的应用【解析】法一:由题意可知,对于选项AB,若12,则Y分布更加集中,则在相同区间范围Y的相对概率更大,所以P(|X1|1)P(|Y2|1),所以选项A正确,选项B错误;对于选项CD,由正态分布的性质可得,P(Y1)P(X2),又P(X2)P(X2)1,所以P(X2)P(Y1)1,所以选项C正确,选项D错误;综上,答案选AC法二:由题意可知,可把正态分布标准化,即Z,则Z N(0,1),对于选项AB,若12,则P(|X1|1)P(|Z|),P(|Y2|1)P(|Z|),因为120,所以,所以
6、P(|X1|1)P(|Y2|1),所以选项A正确,选项B错误;对于选项CD,若12,则P(X2)P(Z),P(Y1)P(Z),所以P(X2)P(Y1)P(Z)P(Z)1,所以选项C正确,选项D错误;综上,答案选AC7.(2021河南开封三模文理T4)2021年开始,我省将试行“3+1+2“的普通高考新模式,即除语文、数学、外语3门必选科目外,考生再从物理、历史中选1门,从化学、生物、地理、政治中选2门作为选考科目为了帮助学生合理选科,某中学将高一每个学生的六门科目综合成绩按比例均缩放成5分制,绘制成雷达图甲同学的成绩雷达图如图所示,下面叙述一定不正确的是()A甲的物理成绩领先年级平均分最多B甲
7、有2个科目的成绩低于年级平均分C甲的成绩从高到低的前3个科目依次是地理、化学、历史D对甲而言,物理、化学、地理是比较理想的一种选科结果【答案】C【解析】甲的成绩从高到低的前3个科目依次是地理、化学、生物(物理),C选项错8.(2021河南开封三模文T10)三人制足球(也称为笼式足球)以其独特的魅力,吸引着中国众多的业余足球爱好者在某次三人制足球传球训练中,A队有甲、乙、丙三名队员参加,甲、乙、丙三人都等可能地将球传给另外两位队友中的一个人若由甲开始发球(记为第一次传球),则第四次仍由甲传球的概率是()ABCD【答案】A【解析】所有传球方法共有:甲乙甲乙;甲乙甲丙;甲乙丙甲;甲乙丙乙;甲丙甲乙;
8、甲丙甲丙;甲丙乙甲;甲丙乙丙则共有8种方法第四次仍由甲传球有2情况,第四次仍由甲传球的概率P9.(2021安徽宿州三模文T3)教育部办公厅于2021年1月18日发布了关于加强中小学生手机管理工作的通知,通知要求中小学生原则上不得将个人手机带入校园某学校为了解2000名学生的手机使用情况,将这些学生编号为1,2,.,2000,从这些学生中用系统抽样方法抽取200名学生进行调查若58号学生被抽到,则下面4名学生中被抽到的是()A9号学生B300号学生C618号学生D816号学生【答案】C【解析】记被抽取到的学生的编号为an,则an为等差数列,公差为d10,所以ana1+10(n1),由an58,解
9、得a18,所以an10n2,所以编号为618的学生可以被抽取到10.(2021安徽宿州三模文T4理T3)我国古代著名数学家祖冲之早在1500多年前就算出圆周率的近似值在3.1415926和3.1415927之间,这是我国古代数学的一大成就我们知道用均匀投点的模拟方法,也可以获得问题的近似解如图,一个圆内切于一个正方形,现利用模拟方法向正方形内均匀投点,若投点落在圆内的概率为,则估计圆周率的值为()ABCD【解析】由几何概型得:P,【答案】A11.(2021江西上饶三模理T3)已知随机变量服从正态分布N(3,2),P(6)0.84,则P(0)()A0.16B0.34C0.66D0.84【答案】A
10、【解析】P(6)10.840.16,P(0)P(6)0.1612.(2021山东聊城三模T9.)对具有相关关系的两个变量x和y进行回归分折时,经过随机抽样获得成对的样本点数据(x1,y1)(i=1,2,n),则下列结论正确的是()A.若两变量x,y具有线性相关关系,则回归直线至少经过一个样本点B.若两变量x,y具有线性相关关系,则回归直线一定经过样本点中心(x,y)C.若以模型y=aebx拟合该组数据,为了求出回归方程,设z=lny,将其变换后得到线性方程z=6x+ln3,则a,b的估计值分别是3和6D.用R2=1-i=1n(yi-yi)2i=1n(yi-y)2来刻画回归模型的拟合效果时,若所
11、有样本点都落在一条斜率为非零实数的直线上,则R2的值为1【答案】 B,C,D【考点】线性回归方程,可线性化的回归分析【解析】【解答】若两变量x,y具有线性相关关系,即满足y=bx+a,则一定满足y=bx+a,样本点不一定在拟合直线上,A不符合题意,B符合题意;若以模型y=aehx拟合该组数据,z=lny=bx+lna=6x+ln3,故a=3,b=6,C符合题意;用R2=1-i=1n(yi-yi)2i=1n(yi-y)2来刻画回归模型的拟合效果时,若所有样本点都落在一条斜率为非零实数的直线上,则yi=yi,即R2=1-i=1n(yi-yi)2i=1n(yi-y)2=1-0=1,D符合题意;故答案
12、为:BCD【分析】根据线性相关关系可判断A错误,B正确。根据拟合曲线关系可判断C正确,D正确。13.(2021山东聊城三模T6.)在某次脱贫攻坚表彰会上,共有36人受到表彰,其中男性多于女性,现从中随机选出2人作为代表上台领奖,若选出的两人性别相同的概率为12,则受表彰人员中男性人数为()A.15B.18C.21D.15或21【答案】C【考点】古典概型及其概率计算公式,组合及组合数公式,一元二次方程【解析】【解答】设男性有x人,则女性有36-x人男性多于女性,x36-x,即x18选出的两人性别相同的概率为12Cx2+C36-x2C362=12,即x2-36x+315=0x=21或x=15(舍)
13、所以男性有21人故答案为:C.【分析】根据古典概率可得Cx2+C36-x2C362=12,再由组合数公式化简得x2-36x+315=0,解一元二次方程即可求得14.(2021四川内江三模理T4)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试(十分制)如图所示,假设得分值的中位数为me,众数为mo,平均值为,则()AmemoBmemoCmemoDmome【答案】D【解析】由图知m05,有中位数的定义应该是第15个数与第16个数的平均值,由图知将数据从大到小排第15 个数是6,第16个数是6,所以3.915.(2021重庆名校联盟三模T9)空气质量指数大小分为五级,指数越
14、大说明污染的情况越严重,对人体危害越大指数范围在:0,50,51,100,101,200,201,300,301,500分别对应“优”、“良”、“轻度污染“、“中度污染”“重度污染”五个等级,下面是某市连续14天的空气质量指数变化趋势图,下列说法中正确的是()A从2日到5日空气质量越来越好B这14天中空气质量指数的极差为195C这14天中空气质量指数的中位数是103.5D这14天中空气质量指数为“良”的频率为【答案】BC【解析】对于A,由折线图可知,从2日到5日空气质量指数越来越大,所以空气质量越来越差,故选项A错误;对于B,这14天中空气质量指数的极差为22025195,故选项B正确;对于C
15、,这14天中空气质量指数为25,37,40,57,79,86,86,121,143,158,160,160,217,220,所以中位数是(86+121)2103.5,故选项C正确;对于D,这14天中空气质量指数为“良”的频率为,故选项D错误16.(2021重庆名校联盟三模T4)孪生素数猜想是希尔伯特在1900年提出的23问题中的第8个:存在无穷多个素数p,使得p+2是素数,素数对(p,p+2)称为孪生素数2013年华人数学家张益唐发表的论文素数间的有界距离第一次证明了存在无穷多组间距小于定值的素数对那么在不超过16的素数中任意取出不同的两个,可组成孪生素数的概率为()ABCD【答案】A【解析】
16、不超过16的素数有2,3,5,7,11,13,在不超过16的素数中任意取出不同的两个,基本事件总数n15,可组成孪生素数包含的基本事件有:(3,5),(5,7),(11,13),共3个,在不超过16的素数中任意取出不同的两个,可组成孪生素数的概率为P17.(2021安徽蚌埠三模文T5)国家统计局官方网站2021年2月28日发布了中华人民共和国2020年国民经济和社会发展统计公报,全面展示了一年来全国人民顽强奋斗取得的令世界瞩目、可载入史册的伟大成就如图是20162020年国内生产总值及其增长速度统计图和三次产业增加值占国内生产总值比重统计图给出下列说法:从2016年至2020年国内生产总值逐年
17、递增;从2016年至2020年国内生产总值增长速度逐年递减;从2016年至2020年第三产业增加值占国内生产总值比重逐年递增;从2016年至2020年第二产业增加值占国内生产总值比重逐年递减其中正确的是()ABCD【答案】D【解析】对于,由图1可知,从2016年到2020年国内生产总值数不断的增大,条形图中对应的长方形的高度不断升高,故选项正确;对于,由图2可知,在2016年到2017年国内生产总值增长的折线是上升的,从6.8到6.9,故选项错误;对于,由图2可知,2016年到2020年第三产业增加值占国内生产总值比重从52.452.753.354.354.5,是不断增加的,故选项正确;对应,
18、由图2可知,在2016年到2017年第二产业增加值占国内生产总值比重由39.6上升到了39.9,故选项错误18.(2021上海嘉定三模T10)有大小相同的红、黄、蓝三种颜色的小球各3个,且每种颜色的3个小球上分别标注号码1、2、3,从中任取3个球,则取出的3个球颜色齐全但号码不全的概率是【答案】【解析】反面法:取出的3个球颜色齐全但号码齐全的情况为6种,取出的3个球颜色齐全但号码不全的概率是19.(2021贵州毕节三模文T3)一袋中装有除颜色外完全相同的4个白球和5个黑球,从中有放回的摸球3次,每次摸一个球用模拟实验的方法,让计算机产生19的随机数,若14代表白球,59代表黑球,每三个为一组,
19、产生如下20组随机数:917 966 191 925 271 932 735 458 569 683431 257 393 627 556 488 812 184 537 989则三次摸出的球中恰好有两次是白球的概率近似为()ABCD【答案】B【解析】20组随机数恰好有两个是1,2,3,4的有191,171,932,393,812,184,共6个,因此三次摸出的球中恰好有两次是白球的概率近似为20.(2021辽宁朝阳三模T8)在三棱柱ABCA1B1C1中,D为侧棱CC1的中点,从该三棱柱的九条棱中随机选取两条,则这两条棱所在直线至少有一条与直线BD异面的概率是()ABCD【答案】B【解析】在三
20、棱柱ABCA1B1C1中,D为侧棱CC1的中点,该三棱柱的九条棱中与BD异面的棱有5条,从该三棱柱的九条棱中随机选取两条,基本事件总数n36,这两条棱所在直线至少有一条与直线BD异面包含的基本事件个数为:m+26,则这两条棱所在直线至少有一条与直线BD异面的概率P21.(2021河南济源平顶山许昌三模文T3)某交通广播电台在正常播音期间,每个整点都会进行报时某出租车司机在该交通广播电台正常播音期间,打开收音机想收听电台整点报时,则他等待时间不超过5分钟的概率为()ABCD【答案】B【解析】设电台的整点报时之间某刻的时间x,由题意可得,0x60,则等待的时间不超过5分钟的概率为P22.(2021
21、江苏常数三模T2)若随机变量XB(5,p),则E(X)()ABCD【答案】D【解析】因为XB(5,p),则,解得,所以23.(2021湖南三模T8)在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球将方法一、二至少能摸出一个黑球的概率分别记为p1和p2,则()Ap1p2Bp1p2Cp1p2D以上三种情况都有可能【答案】A【解析】根据题意,按方法一抽取,每箱中黑球被抽取的概率为,则没有抽到黑球的概率为1,则至少能摸出一个黑球的概率P11()20,按方法一抽
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2021 年高 数学 模拟 分类 汇编 专题 14 概率 统计 解析
限制150内