2013年高考数学 回归基础知识 三、函数的基本性质.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2013年高考数学 回归基础知识 三、函数的基本性质.doc》由会员分享,可在线阅读,更多相关《2013年高考数学 回归基础知识 三、函数的基本性质.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2013年高考数学回归基础知识:三、函数的基本性质三、函数的基本性质(一)函数的单调性1、单调性一般地,设函数f(x)的定义域为I:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1x2时,都有f(x1)f(x2),那么就说函数f(x)在区间D上是增函数,如下图(1)所示。如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1f(x2),那么就说函数f(x)在区间D上是减函数。如果函数y=f(x)在区间D上是增函数或减函数,那么就说函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间。拓展与提示:(1)定义中的x1,x2具有任意性,
2、不能用特殊值代替。(2)若f(x)在区间D1,D2上都是增(减)函数,但f(x)在D1D2上不一定是增(减)函数。(3)由于定义域都是充要性命题,因此由f(x)是增(减)函数,且,这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”。2、函数单调性的判断方法(1)定义法。用定义法判断函数单调性的步骤为第一步:取值。设x1、x2是该区间内的任意两个值,且x10,则f(x)在(a,b)上递增;若当x(a,b)时,f(x)0,则f(x)在(a,b)上递减。拓展与提示:定义有如下等价形式设x1,x2a,b,那么上是增函数,上是减函数;在a,b上是增函数,上是减函数。例 讨论函数在(
3、-2,+)上的单调性。解析 设-2x1x2,则f(x2)-f(x1)=.=.又-2x10,即时,上式0,即f(x2)f(x1);当1-2a0,即f(x2)f(x1)。当时,在(-2,+)上为减函数当时,在(-2,+)上为增函数3、复合函数的单调性对于复合函数y=fg(x),若t=g(x)在区间(a,b)上是单调函数,则y=f(t)在区间(g(a),g(b)或(g(b),g(a)上是单调函数;若t=g(x)与y=f(t)单调性相同(同时为增或减),则y=fg(x)为增函数,若t=g(x)与g=f(x)单调性相反,则y=fg(x)为减函数,简单地说成“同增异减”。y=f(t)增减增减t=g(x)增
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2013年高考数学 回归基础知识 三、函数的基本性质 2013 年高 数学 回归 基础知识 函数 基本 性质
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内