全国通用2016高考数学二轮复习第一部分微专题强化练专题26函数与方程的思想分类讨论的思想含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《全国通用2016高考数学二轮复习第一部分微专题强化练专题26函数与方程的思想分类讨论的思想含解析.doc》由会员分享,可在线阅读,更多相关《全国通用2016高考数学二轮复习第一部分微专题强化练专题26函数与方程的思想分类讨论的思想含解析.doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、【走向高考】(全国通用)2016高考数学二轮复习 第一部分 微专题强化练 专题26 函数与方程的思想、分类讨论的思想(含解析)一、选择题1(文)方程mx有解,则m的最大值为()A1B0C1 D2答案A解析mx,令t0,则x1t2,m1t2t(t)21,故选A(理)已知对于任意的a1,1,函数f(x)x2(a4)x42a的值总大于0,则x的取值范围是()A1x3Bx3C1x2 Dx2答案B解析将f(x)x2(a4)x42a看作是a的一次函数,记为g(a)(x2)ax24x4.当a1,1时恒有g(a)0,只需满足条件即解之得x3.方法点拨1.函数与方程的关系函数与方程是两个不同的概念,但它们之间有
2、着密切的联系,方程f(x)0的解就是函数yf(x)的图象与x轴的交点的横坐标,函数yf(x)也可以看作二元方程f(x)y0,通过方程进行研究2应用函数与方程思想解决函数、方程、不等式问题,是多元问题中的常见题型,常见的解题思路有以下两种:(1)分离变量,构造函数,将不等式恒成立、方程求解等转化为求函数的最值(或值域),然后求解(2)换元,将问题转化为一次不等式、二次不等式或二次方程,进而构造函数加以解决2(文)(2014哈三中二模)一只蚂蚁从正方体ABCDA1B1C1D1的顶点A处出发,经正方体的表面,按最短路线爬行到顶点C1处,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是()A(
3、1)(2) B(1)(3)C(2)(4) D(3)(4)答案C解析爬行路线为时正视图为(2);爬行路线是时,正视图为(4),故选C方法点拨若几何图形的位置不确定时,常常要对各种不同情况加以讨论(理)有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A(0,) B(1,2)C(,) D(0,2)答案A解析若构成三棱锥有两种情形一种情形是三条长为2的线段围成三角形作为棱锥的底面,过BC的中点M作与BC垂直的平面,在平面内,以A为圆心AP2为半径画圆,点P在此圆周上,且不在平面ABC内时,构成三棱锥PABC,此时PBPCa,易
4、求得aa,0a2,取两者的并集得,0a0且a1,指数运算中对底数的限制,不等式两边同乘以一个正数(负数),排列组合中的分类计数(4)由图形的不确定性引起的讨论,如图形的类型、位置,角的终边所在象限、点线面位置等,点斜式(斜截式)直线方程适用范围,直线与圆锥曲线的位置关系(5)由参数的变化引起的分类讨论:含参数的问题(方程、不等式、函数等),由于参数的不同取值会导致结果不同或不同的参数求解、证明的方法不同等(6)由实际问题的实际意义引起的分类讨论3(文)圆锥曲线1的离心率e,则a的值为()A1 BC1或 D以上均不正确答案C解析因焦点在x轴上和y轴上的不同,离心率e关于a的表达式发生变化,故需分
5、类当焦点在x轴上时,e2,解得a;当焦点在y轴上时,e2,解得a1.故选C(理)将1,2,3,4,5排成一列a1a2a3a4a5(如43215中,a14,a23,a32,a41,a55),则满足a1a3,a3a5的排列个数是()A10 B12C14 D16答案D解析a3a2,a3a1,a2a3入手讨论),(1)当a33时,a2,a4只能是4,5,共有AA种;(2)当a32时,a2,a4可以为3,4,5,a5a4,a11,则双曲线1的离心率e的取值范围是()A(1,) B(,)C, D(,)答案B解析e2()21(1)2,因为当a1时,01,所以2e25,即e.5如图所示,在AOB中,点A(2,
6、1),B(3,0),点E在射线OB上自O开始移动设OEx,过E作OB的垂线l,记AOB在直线l左边部分的面积为S,则函数Sf(x)的图象是()答案D解析当0x2时,f(x)xxx2,是开口向上的抛物线,且f(2)1;当23时,f(x)是确定的常数,图象为直线二、填空题6如图,正六边形ABCDEF中,P是CDE内(包括边界)的动点设(,R),则的取值范围是_答案3,4解析建立如图所示的直角坐标系,设正六边形边长为2,则C(2,0),A(1,),B(1,),D(1,),E(1,),F(2,0),设P(x,y)可得(x1,y),(2,0),(1,),则xy2,当点P在如图阴影部分所示的平面区域内时,
7、可作平行直线系xy2z,当直线过点E或C时,取得最小值,()最小值2023;当直线过点D时,取得最大值,()最大值124,则的取值范围是3,4方法点拨和函数与方程思想密切关联的知识点(1)函数与不等式的相互转化对函数yf(x),当y0时,就化为不等式f(x)0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要(3)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决这都涉及二次方程与二次函数的有关理论(4)立体几何中有关线段、角、面积、体积的计算,经常需要运用
8、列方程或建立函数关系的方法加以解决,引进空间向量后,立体几何与函数的关系就更加密切(5)(理)函数f(x)(abx)n(nN*)与二项式定理密切相关,利用这个函数,用赋值法和比较系数法可以解决很多有关二项式定理的问题及求和问题7(文)若关于x的方程cos2x2cosxm0有实数根,则实数m的取值范围是_分析将方程变形为mcos2x2cosx,则当方程有实数根时,cos2x2cosx的取值范围就是m的取值范围答案解析原方程可化为mcos2x2cosx.令f(x)cos2x2cosx,则f(x)2cos2x12cosx22,由于1cosx1,所以当cosx时,f(x)取得最大值,当cosx1时,f
9、(x)取得最小值3,故函数f(x)的值域为,即m.方法点拨本题若令cosxt,则可通过换元法将原方程化为关于t的一元二次方程,但求解过程将非常繁琐,而通过分离参数,引进函数,便可通过函数的值域较为简单地求得参数m的取值范围(理)如果方程cos2xsinxa0在(0,上有解,则a的取值范围是_答案(1,1分析可分离变量为acos2xsinx,转化为确定的相关函数的值域解析解法1:把方程变为acos2xsinx.设f(x)cos2xsinx(x(0,)显然当且仅当af(x)的值域时,af(x)有解f(x)(1sin2x)sinx(sinx)2,且由x(0,知,sinx(0,1f(x)的值域为(1,
10、1,a的取值范围是(1,1解法2:令tsinx,由x(0,可得t(0,1把原方程变为t2t1a0,依题意,该方程在(0,1上有解,设f(t)t2t1a.其图象是开口向上的抛物线,对称轴为x,在区间(0,1的左侧,如下图所示因此f(t)0在(0,1上有解,当且仅当,即,1.因为M是线段AB的中点,所以因为P(0,2),M(x0,y0),N(a,0)三点共线,所以,所以,即2k.因为k,所以2k2,当且仅当k时等号成立,所以2,则a0.三、解答题9(文)设函数f(x)lnxp(x1),pR.(1)当p1时,求函数f(x)的单调区间;(2)设函数g(x)xf(x)p(2x2x1)对任意x1都有g(x
11、)0成立,求p的取值范围解析(1)当p1时,f(x)lnxx1,其定义域为(0,)所以f (x)1.由f (x)10得0x1,所以f(x)的单调递增区间为(0,1,单调递减区间为(1,)(2)由函数g(x)xf(x)p(2x2x1)xlnxp(x21),得g(x)lnx12px.由(1)知,当p1时,f(x)f(1)0,即不等式lnxx1成立当p时,g(x)lnx12px(x1)12px(12p)x0,即g(x)在1,)上单调递减,从而g(x)g(1)0满足题意;当p0,12px0,从而g(x)lnx12px0,即g(x)在(1,)上单调递增,从而存在x0(1,)使得g(x0)g(1)0不满足
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2016 高考 数学 二轮 复习 第一 部分 专题 强化 26 函数 方程 思想 分类 讨论 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
链接地址:https://www.taowenge.com/p-46412064.html
限制150内