全国通用2016高考数学二轮复习专题五第1讲圆与圆锥曲线的基本问题.doc
《全国通用2016高考数学二轮复习专题五第1讲圆与圆锥曲线的基本问题.doc》由会员分享,可在线阅读,更多相关《全国通用2016高考数学二轮复习专题五第1讲圆与圆锥曲线的基本问题.doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第1讲圆与圆锥曲线的基本问题一、选择题1.(2015广东卷)平行于直线2xy10且与圆x2y25相切的直线的方程是()A.2xy0或2xy0B.2xy0或2xy0C.2xy50或2xy50D.2xy50或2xy50解析设所求切线方程为2xyc0,依题有,解得c5,所以所求切线的直线方程为2xy50或2xy50,故选D.答案D2.(2015安徽卷)下列双曲线中,焦点在y轴上且渐近线方程为y2x的是()A.x21 B.y21C.x21 D.y21解析由双曲线性质知A、B项双曲线焦点在x轴上,不合题意;C、D项双曲线焦点均在y轴上,但D项渐近线为yx,只有C符合,故选C.答案C3.已知双曲线1(a0
2、,b0)的一条渐近线方程是yx,它的一个焦点在抛物线y224x的准线上,则双曲线的方程为()A.1 B.1C.1 D.1解析由双曲线1(a0,b0)的一条渐近线方程是yx,可设双曲线的方程为x2(0).因为双曲线1(a0,b0)的一个焦点在抛物线y224x的准线上,所以F(6,0)是双曲线的左焦点,即336,9,所以双曲线的方程为1.故选B.答案B4.(2015浙江卷)如图,设抛物线y24x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则BCF与ACF的面积之比是()A. B. C. D.解析由图象知,由抛物线的性质知|BF|xB1,|AF|xA
3、1,xB|BF|1,xA|AF|1,.故选A.答案A5.(2015山东卷)一条光线从点(2,3)射出,经y轴反射后与圆(x3)2(y2)21相切,则反射光线所在直线的斜率为()A.或 B.或C.或D.或解析圆(x3)2(y2)21的圆心为(3,2),半径r1.(2,3)关于y轴的对称点为(2,3).如图所示,反射光线一定过点(2,3)且斜率k存在,反射光线所在直线方程为y3k(x2),即kxy2k30.反射光线与已知圆相切,1,整理得12k225k120,解得k或k.答案D二、填空题6.圆心在直线x2y0上的圆C与y轴的正半轴相切,圆C截x轴所得弦的长为2,则圆C的标准方程为_.解析设圆C的圆
4、心为(a,b)(b0),由题意得a2b0,且a2()2b2,解得a2,b1.所求圆的标准方程为(x2)2(y1)24.答案(x2)2(y1)247.(2015湖南卷)设F是双曲线C:1的一个焦点,若C上存在点P,使线段PF的中点恰为其虚轴的一个端点,则C的离心率为_.解析不妨设F(c,0),则由条件知P(c,2b),代入1得5,e.答案8.(2015青岛模拟)已知双曲线1(a0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为_.解析双曲线1的渐近线方程为yx,圆C的标准方程为(x3)2y24,圆心为C(3,0).又渐近线方程与圆C相切,即直线
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 通用 2016 高考 数学 二轮 复习 专题 圆锥曲线 基本 问题
限制150内