浙江省2013年高考数学第二轮复习 专题七 概率与统计第2讲 概率、统计与统计案例 理.doc
《浙江省2013年高考数学第二轮复习 专题七 概率与统计第2讲 概率、统计与统计案例 理.doc》由会员分享,可在线阅读,更多相关《浙江省2013年高考数学第二轮复习 专题七 概率与统计第2讲 概率、统计与统计案例 理.doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题七概率与统计第2讲概率、统计与统计案例真题试做1(2012山东高考,理4)采用系统抽样方法从960人中抽取32人做问卷调查为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间1,450的人做问卷A,编号落入区间451,750的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A7 B9 C10 D152(2012陕西高考,理6)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示)设甲乙两组数据的平均数分别为,中位数分别为m甲,m乙,则()A,m甲m乙B,m甲m乙C,m甲
2、m乙D,m甲m乙3(2012广东高考,理7)从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A BC D4(2012湖北高考,理20)根据以往的经验,某工程施工期间的降水量X(单位:mm)对工期的影响如下表:降水量XX300300X700700X900X900工期延误天数Y02610历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9.求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率考向分析概率部分主要考查了概率的概念、互斥事件的概率加法公式、对立事件的求法,以及古典概型的
3、计算,均属容易题统计部分选择、填空都是独立考查本节知识,解答题均与概率的分布列综合预测下一步概率部分会更加注重实际问题背景,考查分析、推理能力,统计部分在直方图、茎叶图都可单独命题,且多为一个小题,解答题仍会与分布列结合热点例析热点一随机事件的概率【例1】(2012江西高考,理18)如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V0)(1)求V0的概率;(2)
4、求V的分布列及数学期望E(V)规律方法 高考中,概率解答题一般有两大方向一、以频率分布直方图为载体,考查统计学中常见的数据特征:如平均数、中位数、频数、频率等或古典概型;二、以应用题为载体,考查条件概率、独立事件的概率、随机变量的期望与方差等需要注意第一种方向的考查变式训练1 (2012北京昌平二模,理16)某游乐场将要举行狙击移动靶比赛比赛规则是:每位选手可以选择在A区射击3次或选择在B区射击2次,在A区每射中一次得3分,射不中得0分;在B区每射中一次得2分,射不中得0分已知参赛选手甲在A区和B区每次射中移动靶的概率分别是和p(0p1)(1)若选手甲在A区射击,求选手甲至少得3分的概率;(2
5、)我们把在A、B两区射击得分的数学期望高者作为选择射击区的标准,如果选手甲最终选择了在B区射击,求p的取值范围热点二古典概型【例2】(2012上海高考,理11)三位同学参加跳高、跳远、铅球项目的比赛若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是_(结果用最简分数表示)规律方法 较为简单的问题可以直接使用古典概型公式计算,较为复杂的概率问题的处理方法:一是转化为几个互斥事件的和,利用互斥事件的加法公式进行求解;二是采用间接解法,先求事件A的对立事件的概率,再由P(A)1P()求事件A的概率变式训练2 (1)(2012江苏高考,6)现有10个数,它们能构成一个以1为首项,3为公
6、比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是_(2)先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为X,Y,则log2XY1的概率为()A B C D思想渗透数形结合思想解答统计问题用数形结合思想解答的统计问题主要是通过频率分布直方图研究数据分布的总体趋势求解时注意的问题:(1)频率分布直方图中纵轴表示,每个小长方形的面积等于这一组的频率(2)在频率分布直方图中,组距是一个固定值,故各小长方形高的比就是频率之比下表给出了某校120名12岁男孩的身高资料(单位:cm)区间界限122,126)126,130)130,134
7、)134,138)138,142)人数58102233区间界限142,146)146,150)150,154)154,158)人数201165(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)根据样本的频率分布图,估计身高小于134 cm的人数约占总人数的百分比解:(1)频率分布表如下:区间人数频数频率122,126)5126,130)8130,134)10134,138)22138,142)33142,146)20146,150)11150,154)6154,158)5(2)频率分布直方图如图:(3)由图估计,身高小于134 cm的学生数约占总数的19%.1某企业共有职工150人,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省2013年高考数学第二轮复习 专题七 概率与统计第2讲 概率、统计与统计案例 浙江省 2013 年高 数学 二轮 复习 专题 概率 统计 案例
限制150内