山东省烟台市芝罘区高考数学知识点总结专题9导数及其应用新人教A版.doc
《山东省烟台市芝罘区高考数学知识点总结专题9导数及其应用新人教A版.doc》由会员分享,可在线阅读,更多相关《山东省烟台市芝罘区高考数学知识点总结专题9导数及其应用新人教A版.doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题九导数及其应用【知识概要】 一、导数的概念和几何意义 1. 函数的平均变化率:函数在区间上的平均变化率为:。 2. 导数的定义:设函数在区间上有定义,若无限趋近于0时,比值无限趋近于一个常数A,则称函数在处可导,并称该常数A为函数在处的导数,记作。函数在处的导数的实质是在该点的瞬时变化率。 3. 求函数导数的基本步骤:(1)求函数的增量;(2)求平均变化率:;(3)取极限,当无限趋近与0时,无限趋近与一个常数A,则。 4. 导数的几何意义: 函数在处的导数就是曲线在点处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步: (1)求出在x0处的导数,即为曲线在点处的切线的斜率;
2、 (2)在已知切点坐标和切线斜率的条件下,求得切线方程为。 当点不在上时,求经过点P的的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P点的坐标代入确定切点。特别地,如果曲线在点处的切线平行与y轴,这时导数不存在,根据切线定义,可得切线方程为。 5. 导数的物理意义: 质点做直线运动的位移S是时间t的函数,则表示瞬时速度,表示瞬时加速度。二、导数的运算1. 常见函数的导数:(1)(k, b为常数);(2)(C为常数);(3);(4);(5);(6);(7);(8)(为常数);(9);(10);(11);(12);(13);(14)。 2. 函数的和、差、积、商的导数: (1);(2)(C
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 山东省 烟台市 芝罘区 高考 数学 知识点 总结 专题 导数 及其 应用 新人
限制150内