浙江专用2016高考数学二轮复习专题4.3立体几何中的向量方法精练理.doc
《浙江专用2016高考数学二轮复习专题4.3立体几何中的向量方法精练理.doc》由会员分享,可在线阅读,更多相关《浙江专用2016高考数学二轮复习专题4.3立体几何中的向量方法精练理.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第3讲立体几何中的向量方法(建议用时:60分钟)一、选择题1已知平面ABC,点M是空间任意一点,点M满足条件,则直线AM()A与平面ABC平行B是平面ABC的斜线C是平面ABC的垂线D在平面ABC内解析由已知得M,A,B,C四点共面,所以AM在平面ABC内,选D.答案D2如图,正方体ABCDA1B1C1D1的棱长为a,M,N分别为A1B和AC上的点,A1MAN,则MN与平面BB1C1C的位置关系是()A相交 B平行C垂直 D不能确定解析()(),又是平面BB1C1C的一个法向量,且0,又MN面BB1C1C,MN平面BB1C1C.答案B3如图,四棱锥SABCD的底面为正方形,SD底面ABCD,则
2、下列结论中不正确的是()AACSBBAB平面SCDCSA与平面SBD所成的角等于SC与平面SBD所成的角DAB与SC所成的角等于DC与SA所成的角解析选项A正确,因为SD垂直于底面ABCD,而AC平面ABCD,所以ACSD;再由四边形ABCD为正方形,所以ACBD;而BD与SD相交,所以,AC平面SBD,ACSB.选项B正确,因为ABCD,而CD平面SCD,AB平面SCD,所以AB平面SCD.选项C正确,设AC与BD的交点为O,易知SA与平面SBD所成的角就是ASO,SC与平面SBD所成的角就是CSO,易知这两个角相等选项D错误,AB与SC所成的角等于SCD,而DC与SA所成的角是SAB,这两
3、个角不相等答案D4已知正三棱柱ABCA1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦等于()A. B. C. D.解析如图所示建立空间直角坐标系,设正三棱柱的棱长为2,O(0,0,0),B(,0,0),A(0,1,0),B1(,0,2),则(,1,2),则(,0,0)为侧面ACC1A1的法向量,由sin .答案A5(2014新课标全国卷)直三棱柱ABCA1B1C1中,BCA90,M,N分别是A1B1,A1C1的中点,BCCACC1,则BM与AN所成角的余弦值为()A. B. C. D.解析法一由于BCA90,三棱柱为直三棱柱,且BCCACC1,可将三棱柱补成正方体建立
4、如图(1)所示空间直角坐标系设正方体棱长为2,则可得A(0,0,0),B(2,2,0),M(1,1,2),N(0,1,2),(1,1,2)(2,2,0)(1,1,2),(0,1,2)cos,.法二如图(2),取BC的中点D,连接MN,ND,AD,由于MN綉B1C1綉BD,因此有ND綉BM,则ND与NA所成角即为异面直线BM与AN所成角设BC2,则BMND,AN,AD,因此cosAND.答案C6如图,点P是单位正方体ABCDA1B1C1D1中异于A的一个顶点,则的值为()A0 B1 C0或1 D任意实数解析可为下列7个向量:,.其中一个与重合,|21;,与垂直,这时0;,与的夹角为45,这时1c
5、os1,最后1cosBAC11,故选C.答案C7(2015浙江卷)如图,已知ABC,D是AB的中点,沿直线CD将ACD翻折成ACD,所成二面角ACDB的平面角为,则()AADB BADB CACB DACB解析极限思想:若,则ACB,排除D;若0,如图,则ADB,ACB都可以大于0,排除A,C.故选B.答案B二、填空题8在一直角坐标系中,已知A(1,6),B(3,8),现沿x轴将坐标平面折成60的二面角,则折叠后A,B两点间的距离为_解析如图为折叠后的图形,其中作ACl于点C,BDl于点D,则AC6,BD8,CD4,两异面直线AC,BD所成的角为60,故由,得|2|268,|2.答案29已知A
6、BCDA1B1C1D1为正方体,()232;()0;向量与向量的夹角是60;正方体ABCDA1B1C1D1的体积为|.其中正确命题的序号是_解析设正方体的棱长为1,中()223()23,故正确;中,由于AB1A1C,故正确;中A1B与AD1两异面直线所成的角为60,但与的夹角为120,故不正确;中|0.故也不正确答案10已知正四棱锥PABCD的侧棱与底面所成角为60,M为PA中点,连接DM,则DM与平面PAC所成角的大小是_解析设底面正方形的边长为a,由已知可得正四棱锥的高为a,建立如图所示空间直角坐标系,则平面PAC的法向量为n(1,0,0),D,A0,a,0,P,M,所以cos ,n,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江 专用 2016 高考 数学 二轮 复习 专题 4.3 立体几何 中的 向量 方法 精练
限制150内