《微生物分类.ppt》由会员分享,可在线阅读,更多相关《微生物分类.ppt(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于微生物分类现在学习的是第1页,共29页1、生物界的分类、生物界的分类地球上的物种估计大约有地球上的物种估计大约有150150万,其中微生物超过万,其中微生物超过1010万种,而且其数目还在不断增加。万种,而且其数目还在不断增加。在生物进化历史过程中演化形成生在生物进化历史过程中演化形成生物种类和种群的多样性。物种类和种群的多样性。生物分类就是通过研究生物的系统发育及其进化历生物分类就是通过研究生物的系统发育及其进化历史,揭示各类生物的多样性及其系统关系,编制分史,揭示各类生物的多样性及其系统关系,编制分类系统,还原生物的自然历史位置。类系统,还原生物的自然历史位置。高等动植分类高等动植分类
2、化石资料、形态学、比较胚胎学化石资料、形态学、比较胚胎学较正确反映其系统发育较正确反映其系统发育现在学习的是第2页,共29页微生物分类的难题:微生物分类的难题:绝大部分微生物个体小、形态简单、易受环境影响而变绝大部分微生物个体小、形态简单、易受环境影响而变异、缺少有性繁殖、缺乏化石资料。异、缺少有性繁殖、缺乏化石资料。生物分类的二种基本原则:生物分类的二种基本原则:a a)根据)根据表型表型(phenetic)(phenetic)特征特征的相似程度分群归类,这种的相似程度分群归类,这种 表型分类重在应用,不涉及生物进化或不以反映生表型分类重在应用,不涉及生物进化或不以反映生 物亲缘关系为目标;
3、物亲缘关系为目标;b b)按照)按照生物系统发育相关性水平生物系统发育相关性水平来分群归类,其目标来分群归类,其目标 是探寻各种生物之间的进化关系,建立反映生物系是探寻各种生物之间的进化关系,建立反映生物系 统发育的分类系统。统发育的分类系统。现在学习的是第3页,共29页从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,最后又有了三原界(或三总界)系统。传统的、为多数学者所接受的是1969年魏塔克(R.H.Whittaker)在Science上提出的五界学说,它以纵向显示从原核生物到真核单细胞生物再到真核多细胞生物的三大进化过程。生物的界级分类学说生物的界级分类学说现在学习的是第4页,
4、共29页利用16SrRNA建立分子进化树的美国科学家 Carl Woese 三域学说的建立三域学说的建立现在学习的是第5页,共29页(1)古细菌原界(Archaebacteria),包括产甲烷细菌、极端嗜盐菌和嗜热嗜酸菌;(2)真细菌原界(Eubacteria),包括蓝细菌和各种除古细菌以外的其它原核生物;(3)真核生物原界(Eucaryotes),包括原生生物、真菌、动物和植物。现在学习的是第6页,共29页2、微生物分类学、微生物分类学经典分类学:按微生物经典分类学:按微生物表型分类表型分类微生物系统学:按微生物系统学:按亲缘关系和进化规亲缘关系和进化规律分类律分类发展表型特征:形态学、生理
5、生化学、生表型特征:形态学、生理生化学、生态学等,推断微生物的系统发育。态学等,推断微生物的系统发育。表型特征结合分子水平上比较微生物的基因表型特征结合分子水平上比较微生物的基因型特征(如型特征(如16S rRNA)16S rRNA)探讨微生物进化、系探讨微生物进化、系统发育和分类鉴定。统发育和分类鉴定。微生物分类学的三个任务:分类、鉴定及命名微生物分类学的三个任务:分类、鉴定及命名分类分类是根据微生物的相似性和亲缘关系,将微生物归入不同的分类类群。是根据微生物的相似性和亲缘关系,将微生物归入不同的分类类群。鉴定鉴定是确定一个新的分离物属于已经确认的分类单元的过程。是确定一个新的分离物属于已经
6、确认的分类单元的过程。命名命名是根据国际命名法规给微生物分类单元以科学的名称。是根据国际命名法规给微生物分类单元以科学的名称。现在学习的是第7页,共29页以啤酒酵母为例,它在分类学上的地位是:以啤酒酵母为例,它在分类学上的地位是:界界(Kindom)(Kindom):真菌界:真菌界 门门(Phyllum)(Phyllum):真菌门:真菌门 纲纲(Class)(Class):子囊菌纲:子囊菌纲 目目(Order)(Order):内孢霉目:内孢霉目 科科(Family)(Family):内孢霉科:内孢霉科 属属(Genus)(Genus):酵母属:酵母属 种种(Species)(Species):
7、啤酒酵母:啤酒酵母3 3、微生物的分类单位、微生物的分类单位界、门、纲、目、科、属、种界、门、纲、目、科、属、种 种是最基本的分类单位种是最基本的分类单位 每一分类单位之后可有亚门、亚纲、亚目、亚科每一分类单位之后可有亚门、亚纲、亚目、亚科.现在学习的是第8页,共29页种(种(speciesspecies):是一个基本分类单位;是一大群:是一个基本分类单位;是一大群表型表型特征高度相似、特征高度相似、亲缘关系极其接近,与同属内其他种有明显差别的菌株的总称。亲缘关系极其接近,与同属内其他种有明显差别的菌株的总称。菌株(菌株(strainstrain):表示任何由一个独立分离的单细胞繁殖而成的纯种
8、群表示任何由一个独立分离的单细胞繁殖而成的纯种群体及其一切后代(起源于共同祖先并保持祖先特性的一组纯种后代菌群)体及其一切后代(起源于共同祖先并保持祖先特性的一组纯种后代菌群)。因此,一种微生物的不同来源的纯培养物均可称为该菌种的一个菌株。因此,一种微生物的不同来源的纯培养物均可称为该菌种的一个菌株。菌株强调的是遗传型纯的谱系。菌株强调的是遗传型纯的谱系。例如:大肠埃希氏杆菌的两个菌株:例如:大肠埃希氏杆菌的两个菌株:Escherichia coli B Escherichia coli B 和和Escherichia coli K12Escherichia coli K12菌株的表示法:菌株
9、的表示法:种是分类学上的基本单位,菌株是实际上应用的基本单位,种是分类学上的基本单位,菌株是实际上应用的基本单位,因为同一菌种的不因为同一菌种的不同菌株在产酶上种类或代谢物产量上会有很大的不同和差别!同菌株在产酶上种类或代谢物产量上会有很大的不同和差别!现在学习的是第9页,共29页亚种亚种(subspecies(subspecies)或变种)或变种(variety)(variety):为种内的再分类。为种内的再分类。当某一个种内的不同菌株存在少数明显而稳定的变异特征或遗传形状,而当某一个种内的不同菌株存在少数明显而稳定的变异特征或遗传形状,而又不足以区分成新种时,可以将这些菌株细分成两个或更多
10、的小的分类单又不足以区分成新种时,可以将这些菌株细分成两个或更多的小的分类单元元亚种。亚种。变种是亚种的同义词,因变种是亚种的同义词,因“变种变种”一词易引起词义上的混淆,从一词易引起词义上的混淆,从19761976年后,不在使用变种一词。通常把实验室中所获得的变异型菌株,称年后,不在使用变种一词。通常把实验室中所获得的变异型菌株,称之为亚种。之为亚种。如:如:E.coli k12E.coli k12(野生型)是不需要特殊(野生型)是不需要特殊aaaa的,而实验室变异后,可从的,而实验室变异后,可从k12k12获得某获得某aaaa的缺陷型,此即称为的缺陷型,此即称为E.coli k12E.co
11、li k12的亚种。的亚种。型型(form):form):常指亚种以下的细分。当同种或同亚种内不同菌株之间的性状差异不足常指亚种以下的细分。当同种或同亚种内不同菌株之间的性状差异不足以分为新的亚种时,可以细分为不同的型。以分为新的亚种时,可以细分为不同的型。例如:按抗原特征的差异分为不同的血清型;例如:按抗原特征的差异分为不同的血清型;现在学习的是第10页,共29页学名学名是微生物的科学名称,它是按照有关微生物分类国际委员会是微生物的科学名称,它是按照有关微生物分类国际委员会拟定的法则命名的。学名由拉丁词、或拉丁化的外来词组成。学名拟定的法则命名的。学名由拉丁词、或拉丁化的外来词组成。学名的命
12、名有双名法和三名法两种。的命名有双名法和三名法两种。双名法:双名法:学名学名=属名属名+种名种名+(首次定名人)(首次定名人)+现定名人现定名人+定名年份定名年份属名属名:拉丁文的名词或用作名词的形容词,单数,首字母大写,表示:拉丁文的名词或用作名词的形容词,单数,首字母大写,表示微生物的主要特征,由微生物构造,形状或由科学家命名。微生物的主要特征,由微生物构造,形状或由科学家命名。种名种名:拉丁文形容词,字首小写,为微生物次要特征,:拉丁文形容词,字首小写,为微生物次要特征,如微生物色素、形状、来源或科学家姓名等。如微生物色素、形状、来源或科学家姓名等。4 4、微生物的命名、微生物的命名必要
13、,用斜必要,用斜体表示体表示可省略,用正可省略,用正体字体字微生物的名字有俗名和学名两种。如:微生物的名字有俗名和学名两种。如:红色面包霉红色面包霉粗糙脉孢霉粗糙脉孢霉 绿脓杆菌绿脓杆菌铜绿假单胞菌铜绿假单胞菌现在学习的是第11页,共29页例:大肠埃希氏杆菌 Escherichia coli(Migula)Castellani et Chalmers 1919 金黄色葡萄球菌 Staphylococcus aureus Rosenbach 1884当泛指某一属微生物,而不特指该属中某一种(或未定种名)时,可在属名后加sp.或ssp.(分别代表species 缩写的单数和复数形式)例如:Sacc
14、haromyces sp.表示酵母菌属中的一个种。现在学习的是第12页,共29页菌株名称在种名后面自行加上数字、地名或符号等,如:Bacillus subtilis AS1.389 AS=Academia Sinica Bacillus subtilis BF7658 BF=北纺 Clostridium acetobutylicum ATCC824 丙酮丁醇梭菌ATCCAmerican Type Culture Collection美国模式菌种保藏中心 当文章中前面已出现过某学名时,后面的可将其属名缩写成13个字母。如:Escherichia coli 可缩写成 E.coli Staphylo
15、coccus aureus可缩写成 S.aureus三名法三名法:用于对亚种的命名,这时在属和种名后加写一个subsp.,然后再附上亚种名称(斜排体)。如:Bacillus thuringiensis subsp.galleria 苏云金芽孢杆菌腊螟亚种 现在学习的是第13页,共29页形态结构、生理生化、少量的化石资料、行为习性,等等表型特征:5、进化指征的选择:b)形态特征在不同类群中进化速度差异很大,仅根据形态推断进化关系往往不准确;缺点:a)由于微生物可利用的形态特征少,很难把所有生物放在同一水平上进行比较;现在学习的是第14页,共29页蛋白质、蛋白质、RNARNA和和DNADNA序列进
16、化变化的显著特点是进化速率相对恒定,也序列进化变化的显著特点是进化速率相对恒定,也就是说,分子序列进化的改变量就是说,分子序列进化的改变量(氨基酸或核苷酸替换数或替换百分率氨基酸或核苷酸替换数或替换百分率)与分子进化的时间成正比。与分子进化的时间成正比。生物大分子作为进化标尺依据生物大分子作为进化标尺依据a)在两群生物中,如果同一种分子的序列差异很大时,-进化距离远,进化过程中很早就分支了。b)如果两群生物同一来源的大分子的序列基本相同,-处在同一进化水平上。大量的资料表明:功能重要的大分子、或者大分子中功能重要大量的资料表明:功能重要的大分子、或者大分子中功能重要的区域,比功能不重要的分子或
17、分子区域进化变化速度低。的区域,比功能不重要的分子或分子区域进化变化速度低。现在学习的是第15页,共29页RNARNA作为进化的指征作为进化的指征16S rRNA16S rRNA被普遍公认为是一把好的谱系分析的被普遍公认为是一把好的谱系分析的“分子尺分子尺”:1 1)rRNArRNA具有重要且恒定的生理功能;具有重要且恒定的生理功能;2 2)在)在16SrRNA16SrRNA分子中,既含有高度保守的序列区域,又有中度保守和分子中,既含有高度保守的序列区域,又有中度保守和高度变化的序列区域,因而它适用于进化距离不同的各类生物亲缘关系高度变化的序列区域,因而它适用于进化距离不同的各类生物亲缘关系的
18、研究;的研究;3 3)16SrRNA16SrRNA分子量大小适中,便于序列分析;分子量大小适中,便于序列分析;4 4)rRNArRNA在细胞中含量大在细胞中含量大(约占细胞中约占细胞中RNARNA的的90%)90%),也易于提取;,也易于提取;5 5)16SrRNA16SrRNA普遍存在于真核生物和原核生物中普遍存在于真核生物和原核生物中(真核生物中其同真核生物中其同源分子是源分子是18SrRNA)18SrRNA)。因此它可以作为测量各类生物进化的工具。因此它可以作为测量各类生物进化的工具。现在学习的是第16页,共29页Eubacteria(真细菌界)Archaebacteria(古细菌界)E
19、ukarya(真核生物界)Carl Woese利用16SrRNA建立分子进化树现在学习的是第17页,共29页微生物(病毒)古生菌(Archaea)细菌(Bacteria)真菌(酵母、霉菌、蕈菌等)、单细胞藻类、原生动物等非细胞型细胞型原核微生物真核微生物(Eukarya)古生菌在进化谱系上与真细菌及真核生物相互并列,且与后者关系更近,而其细胞构造却与真细菌较为接近,同属于原核生物。现在学习的是第18页,共29页6、微生物分类鉴定的特征和技术形态学特征形态学特征、生理学特征、生理学特征、生态学特征生态学特征6.1 生物分类的传统指标:形态学特征培养特征、培养特征、运动性、运动性、特殊的细胞结构、
20、特殊的细胞结构、细胞形态及其染色特性、细胞形态及其染色特性、等等等等微生物分类和鉴定的重要依据之一:a)易于观察和比较,尤其是真核微生物和具有特殊 形态结构的细菌;b)许多形态学特征依赖于多基因的表达,具有相对 的稳定性;现在学习的是第19页,共29页生理生化特征与微生物的酶和调节蛋白质的本质和活性直接相关;代谢产物等代谢产物等营养类型;营养类型;与氧的关系;与氧的关系;对温度的适应性;对温度的适应性;对对pHpH的适应性;的适应性;对渗透压的适应性;对渗透压的适应性;酶及蛋白质都是基因产物;对微生物生理生化特征的比较也是对微生物基因组的间接比较;测定生理生化特征比直接分析基因组要容易得多;现
21、在学习的是第20页,共29页常借助特异性的血清学反应来确定未知菌种、亚种或菌株。生态特性包括在自然界的分布情况,与其他生物有否寄生或共生关系,宿主种类及与宿主关系,有性生殖情况,生活史等。血清学反应现在学习的是第21页,共29页6.2 核酸的碱基组成和分子杂交特点:与形态及生理生化特性的比较不同,对DNA的碱基组成的比较和进行核酸分子杂交是直接比较不同微生物之间基因组的差异,因此结果更加可信。(1)DNA的碱基组成(G+Cmol%)DNA碱基因组成是各种生物一个稳定的特征,即使个别基因突变,碱基组成也不会发生明显变化。分类学上,用G+C占全部碱基的克分子百分数(G+Cmol%)来表示各类生物的
22、DNA碱基因组成特征。现在学习的是第22页,共29页每个生物种都有特定的GC%范围,因此后者可以作为分类鉴定的指标。细菌的GC%范围为25-75%,变化范围最大,因此更适合于细菌的分类鉴定。现在学习的是第23页,共29页GC%测定主要用于对表型特征难区分的细菌作出鉴定,并可检验表型特征分类的合理性,从分子水平上判断物种的亲缘关系。使用原则:G+C含量的比较主要用于分类鉴定中的否定否定每一种生物都有一定的碱基组成,亲缘关系近的生物,它们应该具有相似的G+C含量,若不同生物之间G+C含量差别大表明它们关系远。但具有相似但具有相似G+CG+C含量的生物并不一定表明它们之间具有近的亲缘含量的生物并不一
23、定表明它们之间具有近的亲缘关系。关系。现在学习的是第24页,共29页同一个种内的不同菌株G+C含量差别应在45%以下;同属不同种的差别应低于1015%;G+C含量已经作为建立新的微生物分类单元的一项基本特征,它对于种、属甚至科的分类鉴定有重要意义。若二个在形态及生理生化特性方面及其相似的菌株,如果其若二个在形态及生理生化特性方面及其相似的菌株,如果其G+CG+C含量含量的的差别大于差别大于5%5%,则肯定不是同一个种,则肯定不是同一个种,大于大于15%15%则肯定不是同一则肯定不是同一个属。个属。在疑难菌株鉴定、新种命名、建立一个新的分类单位时,G+C含量是一项重要的,必不可少的鉴定指标。其分
24、类学意义主要是作为建立新分类单元的一项基本特征和把那些G+C含量差别大的种类排除出某一分类单元。G+C含量的比较主要用于分类鉴定中的否定否定现在学习的是第25页,共29页(2)核酸的分子杂交不同生物DNA碱基排列顺序的异同直接反映生物之间亲缘关系的远近,碱基排列顺序差异越小,它们之间的亲缘关系就越近,反之亦然。核酸分子杂交(hybridization)间接比较不同微生物DNA碱基排列顺序的相似性a)DNA-DNA杂交;(亲缘关系相对近的微生物之间的亲缘关系比较)b)DNA-rRNA杂交;(亲缘关系相对远的微生物之间的亲缘关系比较)c)核酸探针;(利用特异性的探针,用于细菌等的快速鉴定)现在学习
25、的是第26页,共29页(3)16SrRNA或18SrRNA的核酸序列分析16SrRNA被普遍公认为是一把好的谱系分析的“分子尺”:16SrRNA的序列高度保守,可精确指示细菌之间的亲缘关系16SrRNA的大小为1500bp左右,所含信息能反映生物界进化关系,易操作,适用于各级分类单元目前常用的是建立在PCR技术基础上的16SrRNA基因的直接测序法,方便快捷。现在学习的是第27页,共29页伯杰氏鉴定细菌学手册伯杰氏鉴定细菌学手册(Bergeys Manual of Determinative Bacteriology)美国宾夕法尼亚大学的细菌学教授伯杰(D.Bergey)(1860-1937)1957年第七版后,由于越来越广泛地吸收了国际上细菌分类学家参加编写(如1974年第八版,撰稿人多达130多位,涉及15个国家;现行版本撰稿人多达300多人,涉及近20个国家),所以它的近代版本反映了出版年代细菌分类学的最新成果,因而逐渐确立了在国际上对细菌进行全面分类的权威地位。7.1 7.1 细菌分类系统细菌分类系统7 7、微生物分类系统、微生物分类系统现在学习的是第28页,共29页26.09.2022感感谢谢大大家家观观看看现在学习的是第29页,共29页
限制150内