《几何图形重叠面积的计算讲稿.ppt》由会员分享,可在线阅读,更多相关《几何图形重叠面积的计算讲稿.ppt(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于几何图形重叠面积的计算第一页,讲稿共十二页哦一、基本图形一、基本图形ABCCABDABCDABCDOABO扇形面积扇形面积LR二、组合图形二、组合图形探讨:我们如果把这些基本图形进行适当的组合,而出现的探讨:我们如果把这些基本图形进行适当的组合,而出现的“重叠部分重叠部分”又是不规又是不规则的图形,这样的重叠部分(阴影部分)面积又如何计算?则的图形,这样的重叠部分(阴影部分)面积又如何计算?ABCDE例:如图,己知矩形例:如图,己知矩形ABCD中,中,AB=8,BC=4,则阴影部分的面积是多少?则阴影部分的面积是多少?方法方法1 1、利用、利用和差和差来计算重叠部分的面积来计算重叠部分的面
2、积基本图形基本图形:解题思路解题思路:扇形与矩形。扇形与矩形。S扇形扇形EAD+S矩形矩形S三角形三角形EBC第二页,讲稿共十二页哦练一练练一练ABCDE1 1、正方形、正方形ABCDABCD内接于内接于O O,O O的半的半径为径为2 2,分别以正方形各边为折痕,分别以正方形各边为折痕,将劣弧将劣弧ABAB、BCBC、CDCD、DADA向内对折,向内对折,则图中阴影部分的面积为则图中阴影部分的面积为_ _ 解题思路解题思路:2 2、在矩形、在矩形ABCDABCD中,中,AB=a,BC=2aAB=a,BC=2a,求图,求图中阴影部分面积中阴影部分面积解题思路:解题思路:S S矩形矩形S S扇形
3、扇形S1S1S1=SS1=S梯形梯形ABEDABEDS S扇形扇形ADEADEF3 3、如图,把、如图,把O1O1向右平移向右平移8 8个单位长度得个单位长度得O2O2,两,两圆相交于圆相交于A A、B B,且,且O1AO2AO1AO2A,则图中阴影部分,则图中阴影部分的面积是的面积是_8-16S S正方形正方形4 4(S S扇形扇形S S三角形)三角形)第三页,讲稿共十二页哦4、在ABC中,AB=AC,以AB为直径的O交BC于M点,MNAC 若BAC=120度,AB=2,求证MN是O切线;求图中阴影部分的面积OBMANC思路思路:S阴影部分=S梯形AOMNS扇形AOM5、AB是O的切线,切点
4、为B,AO交O于C点,过点C作DCOA交AB于D点 (1)求证:CDO=BDO(2)若A=30度,O的半径为4,求阴影部分的面积BDAOC思路思路:(S直角三角形OBDS扇形BOD)2第四页,讲稿共十二页哦方法方法2 2、利用、利用平移平移来计算重叠部分的面积来计算重叠部分的面积组合图形组合图形例例1 1:己知直经:己知直经AB=10AB=10,点,点C C、D D是圆的三是圆的三等分点,求阴影部分的面积。等分点,求阴影部分的面积。ABCDO解题思解题思路:路:根据平行线之间距离相等,转化根据平行线之间距离相等,转化求求S S扇形扇形计算结果:计算结果:例例2 2、如图,、如图,P P内含于内
5、含于O O,O O的弦的弦ABAB切切P P于点于点C C,且且ABOPABOP若阴影部分的面积为若阴影部分的面积为 ,则弦,则弦ABAB的长为的长为_ABCO P6第五页,讲稿共十二页哦练一练练一练1 1、如图直经、如图直经AB=10AB=10,点,点C C、D D是圆的三等分点。则阴影是圆的三等分点。则阴影部分的面积部分的面积_EBDCAO2 2、如图两圆内切,大半圆弦、如图两圆内切,大半圆弦ABAB切小半圆于切小半圆于D D,AB=6AB=6,则阴影部分的面积,则阴影部分的面积_BOADBAOD3 3、如图,、如图,ACAC与与O O相切于点相切于点C C,线段,线段AOAO交交O O于
6、点于点B B过点过点B B作作BDACBDAC交交O O于点于点D D,若,若(1 1)求)求O O的半径长;的半径长;(2 2)求由弦)求由弦CDCD与弧与弧BCBC所围成的阴影部分的所围成的阴影部分的面积面积 DBACEO第六页,讲稿共十二页哦组合图形组合图形方法方法3 3、利用、利用旋转旋转来求重叠部分的面积来求重叠部分的面积例例1 1、:如图己知、:如图己知AB=BC=2AB=BC=2,以,以ABAB为直经的圆为直经的圆切切BCBC于点于点B B,求图中阴影部分的面积。,求图中阴影部分的面积。0ABCOD S S阴影部分阴影部分=SABC=SABC的一半的一半解题思路:解题思路:例例2
7、 2、如图,方格纸中、如图,方格纸中4 4个小正方形的边长个小正方形的边长均为均为1 1,则图中阴影部分三个小扇形的面积,则图中阴影部分三个小扇形的面积和为和为 ABO例3、正方形的四个顶点在直径为4的大圆圆周上,四条边与小圆都相切,AB、CD过圆心O,且ABCD,则图中阴影部分的面积是ACBDO第七页,讲稿共十二页哦1、在、在Rt ABC中,中,C为直为直角,角,AC=8,BC=6,两等圆,两等圆 A,B外切,那么图中两个扇形外切,那么图中两个扇形(即阴影部分)(即阴影部分)的面积之和为的面积之和为_ABC2、如图在矩形如图在矩形ABCDABCD中,中,ABAB=1=1,ADAD=2=2,现
8、将一块直径为现将一块直径为2 2的半圆形纸片放置在的半圆形纸片放置在矩形矩形ABCDABCD中,使其直径与中,使其直径与ADAD重合,若将重合,若将半圆上点半圆上点D D 固定,再把半圆往矩形外旋固定,再把半圆往矩形外旋至至ADAD处,半圆弧处,半圆弧ADAD与与ADAD交于点交于点P P,设设ADA ADA=(1 1)若)若AP=2-AP=2-,求,求的度数;的度数;(2 2)当)当=30 =30 时,求阴影部分的时,求阴影部分的面积面积ADCBAPO练习练习ADCBAPO第八页,讲稿共十二页哦巩固复习巩固复习1、如图,在如图,在Rt ABC中,中,AC=4,BC=2,分别以,分别以AC、B
9、C为直径画半圆,则图为直径画半圆,则图中阴影部分的面积为中阴影部分的面积为_ CAB2 2、如图,菱形、如图,菱形OABCOABC中,中,OA=1OA=1,将菱形,将菱形OABCOABC绕点绕点O O按顺时针方向旋转按顺时针方向旋转 ,则图中由弧,则图中由弧BBBB,弧,弧ACAC,CBCB围成的阴影部分的面积是围成的阴影部分的面积是_ COAB3 3、如图,正方形、如图,正方形ABCDABCD的边长为的边长为4 4,MNBCMNBC,在,在MNMN上上任取两点任取两点P P、Q Q,那么图中阴影部分的面积是,那么图中阴影部分的面积是 NABCDMPQ4 4、己知正方形、己知正方形OCDEOCDE的边长的边长为为1 1,求阴影部分面积。,求阴影部分面积。FEOABCD8第九页,讲稿共十二页哦2 2、如图,、如图,A A、B B、C C、D D两两不相交,且半径都是两两不相交,且半径都是2cm2cm,求图中阴影部分的面积。,求图中阴影部分的面积。1 1、A,B,CA,B,C两两相交两两相交,且它们且它们的半径都是的半径都是0.5cm,0.5cm,则图中三个则图中三个扇形扇形 (即三个的阴影部分即三个的阴影部分)的面的面积之和为积之和为 .ABC第十页,讲稿共十二页哦第十一页,讲稿共十二页哦感谢大家观看9/27/2022第十二页,讲稿共十二页哦
限制150内