辽宁省沈阳市铁路实验中学2015_2016学年高二数学上学期期中试卷理含解析.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《辽宁省沈阳市铁路实验中学2015_2016学年高二数学上学期期中试卷理含解析.doc》由会员分享,可在线阅读,更多相关《辽宁省沈阳市铁路实验中学2015_2016学年高二数学上学期期中试卷理含解析.doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2015-2016学年辽宁省沈阳市铁路实验中学高二(上)期中数学试卷(理科)一、选择题:共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1下列有关命题的说法错误的是( )A命题“若x23x+2=0则x=1”的逆否命题为:“若x1,则x23x+20”B“x=1”是“x23x+2=0”的充分不必要条件C若pq为假命题,则p、q均为假命题D对于命题p:xR,使得x2+x+10则p:xR,均有x2+x+102等差数列an中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于( )A66B99C144D2973已知条件p: x1,q:,则p是q的( )A充分
2、不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4已知命题p:xR,使得x+2,命题q:xR,x2+x+10,下列命题为真的是( )ApqB(p)qCp(q)D(p)(q)5设等差数列an的前n项和为Sn,若a1=11,a4+a6=6,则当Sn取最小值时,n等于( )A6B7C8D96设等比数列an的前n项和为Sn,若=3,则=( )A2BCD37下列说法正确的是( )A函数y=x+的最小值为2B函数y=sinx+(0x)的最小值为2C函数y=|x|+的最小值为2D函数y=lgx+的最小值为28设变量x,y满足约束条件,则目标函数z=y2x的最小值为( )A7B4C1D29已知数列1
3、,a1,a2,4成等差数列,1,b1,b2,b3,4成等比数列,则的值是( )ABC或D10设a0,b1,若a+b=2,且不等式+m2+8m恒成立,则m的取值范围是( )Am9或m1Bm1或m9C9m1D1m911已知变量x,y满足,则u=的值范围是( )ABCD12已知等差数列an的前n项和为Sn且满足S170,S180,则中最大的项为( )ABCD二、填空题(共4小题,每小题5分,满分20分)13已知a0,b0,ab(a+b)=1,求a+b的最小值为_14变量x、y满足线性约束条件,则使目标函数z=ax+y(a0)取得最大值的最优解有无数个,则a的值为_15已知an是等比数列,则a1a2+
4、a2a3+anan+1=_16下列命题中:ABC中,ABsinAsinB数列an的前n项和Sn=n22n+1,则数列an是等差数列锐角三角形的三边长分别为3,4,a,则a的取值范围是a5若Sn=22an,则an是等比数列真命题的序号是_三、解答题17设命题p:实数x满足x24ax+3a20,其中a0,命题q:实数x满足(1)若a=1,且pq为真,求实数x的取值范围;(2)若p是q的充分不必要条件,求实数a的取值范围18在ABC中,内角A,B,C的对边分别为a,b,c已知(1)求的值;(2)若cosB=,ABC的周长为5,求b的长19已知各项均不相等的等差数列an的前五项和S5=20,且a1,a
5、3,a7成等比数列(1)求数列an的通项公式;(2)设Tn为数列的前n项和,若存在nN*,使得Tnan+10成立求实数的取值范围20为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=(0x10),若不建隔热层,每年能源消耗费用为8万元设f(x)为隔热层建造费用与20年的能源消耗费用之和()求k的值及f(x)的表达式()隔热层修建多厚时,总费用f(x)达到最小,并求最小值21解关于x的不等式ax2(2a+2)x+402
6、2定义:称为n个正数p1,p2,pn的“均倒数”已知数列an的前n项的“均倒数”为,(1)求an的通项公式;(2)设cn=,试判断并说明数列cn的单调性;(3)求数列cn的前n项和Sn2015-2016学年辽宁省沈阳市铁路实验中学高二(上)期中数学试卷(理科)一、选择题:共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1下列有关命题的说法错误的是( )A命题“若x23x+2=0则x=1”的逆否命题为:“若x1,则x23x+20”B“x=1”是“x23x+2=0”的充分不必要条件C若pq为假命题,则p、q均为假命题D对于命题p:xR,使得x2+x+10则p:xR,均有x
7、2+x+10【考点】命题的真假判断与应用;四种命题间的逆否关系;必要条件、充分条件与充要条件的判断【专题】综合题【分析】根据四种命题的定义,我们可以判断A的真假;根据充要条件的定义,我们可以判断B的真假;根据复合命题的真值表,我们可以判断C的真假;根据特称命题的否定方法,我们可以判断D的真假,进而得到答案【解答】解:命题“若x23x+2=0则x=1”的逆否命题为:“若x1,则x23x+20”故A为真命题;“x=1”是“x23x+2=0”的充分不必要条件故B为真命题;若pq为假命题,则p、q存在至少一个假命题,但p、q不一定均为假命题,故C为假命题;命题p:xR,使得x2+x+10则非p:xR,
8、均有x2+x+10,故D为真命题;故选C【点评】本题考查的知识点是命题的真假判断与应用,四种命题间的逆否关系,充要条件,是对简单逻辑综合的考查,属于简单题型2等差数列an中,若a1+a4+a7=39,a3+a6+a9=27,则前9项的和S9等于( )A66B99C144D297【考点】等差数列的前n项和【专题】计算题【分析】根据等差数列的通项公式化简a1+a4+a7=39和a3+a6+a9=27,分别得到和,用得到d的值,把d的值代入即可求出a1,根据首项和公差即可求出前9项的和S9的值【解答】解:由a1+a4+a7=3a1+9d=39,得a1+3d=13,由a3+a6+a9=3a1+15d=
9、27,得a1+5d=9,得d=2,把d=2代入得到a1=19,则前9项的和S9=919+(2)=99故选B【点评】此题考查学生灵活运用等差数列的通项公式及前n项和的公式化简求值,是一道中档题3已知条件p:x1,q:,则p是q的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断【专题】简易逻辑【分析】根据充分必要条件的定义,分别证明其充分性和必要性,从而得到答案【解答】解:由x1,推出1,p是q的充分条件,由1,得0,解得:x0或x1不是必要条件,故选:A【点评】本题考查了充分必要条件,考查了不等式的解法,是一道基础题4已知命题p:x
10、R,使得x+2,命题q:xR,x2+x+10,下列命题为真的是( )ApqB(p)qCp(q)D(p)(q)【考点】复合命题的真假【专题】简易逻辑【分析】本题的关键是判定命题p:xR,使得,命题的真假,在利用复合命题的真假判定【解答】解:对于命题p:xR,使得,当x0时,命题p成立,命题p为真命题,显然,命题q为真根据复合命题的真假判定,pq为真,(p)q为假,p(q)为假,(p)(q)为假【点评】本题考查的知识点是复合命题的真假判定,解决的办法是先判断组成复合命题的简单命题的真假,再根据真值表进行判断5设等差数列an的前n项和为Sn,若a1=11,a4+a6=6,则当Sn取最小值时,n等于(
11、 )A6B7C8D9【考点】等差数列的前n项和【专题】等差数列与等比数列【分析】条件已提供了首项,故用“a1,d”法,再转化为关于n的二次函数解得【解答】解:设该数列的公差为d,则a4+a6=2a1+8d=2(11)+8d=6,解得d=2,所以,所以当n=6时,Sn取最小值故选A【点评】本题考查等差数列的通项公式以及前n项和公式的应用,考查二次函数最值的求法及计算能力6设等比数列an的前n项和为Sn,若=3,则=( )A2BCD3【考点】等比数列的前n项和【分析】首先由等比数列前n项和公式列方程,并解得q3,然后再次利用等比数列前n项和公式则求得答案【解答】解:设公比为q,则=1+q3=3,所
12、以q3=2,所以=故选B【点评】本题考查等比数列前n项和公式7下列说法正确的是( )A函数y=x+的最小值为2B函数y=sinx+(0x)的最小值为2C函数y=|x|+的最小值为2D函数y=lgx+的最小值为2【考点】基本不等式【专题】导数的综合应用;不等式的解法及应用【分析】Ax0时无最小值;B令sinx=t,由0x,可得sinx(0,1),即t(0,1,令f(t)=t+,利用导数研究函数的单调性极值与最值即可得出;C令|x|=t0,令f(t)=t+,利用导数研究函数的单调性极值与最值即可得出;D当0x1时,lgx0,无最小值【解答】解:Ax0时无最小值;B令sinx=t,0x,sinx(0
13、,1),即t(0,1,令f(t)=t+,f(t)=1=0,函数f(t)在t(0,1上单调递减,f(t)f(1)=3因此不正确C令|x|=t0,令f(t)=t+,f(t)=1=,函数f(t)在t(0,上单调递减,在tBCD【考点】简单线性规划【专题】计算题;不等式的解法及应用;直线与圆【分析】化简得u=3+,其中k=表示P(x,y)、Q(1,3)两点连线的斜率画出如图可行域,得到如图所示的ABC及其内部的区域,运动点P得到PQ斜率的最大、最小值,即可得到u=的值范围【解答】解:u=3+,u=3+k,而k=表示直线P、Q连线的斜率,其中P(x,y),Q(1,3)作出不等式组表示的平面区域,得到如图
14、所示的ABC及其内部的区域其中A(1,2),B(4,2),C(3,1)设P(x,y)为区域内的动点,运动点P,可得当P与A点重合时,kPQ=达到最小值;当P与B点重合时,kPQ=达到最大值u=3+k的最大值为+3=;最小值为+3=因此,u=的值范围是故选:A【点评】本题给出二元一次不等式组,求u=的取值范围着重考查了直线的斜率公式、二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题12已知等差数列an的前n项和为Sn且满足S170,S180,则中最大的项为( )ABCD【考点】等差数列的性质【专题】等差数列与等比数列【分析】由题意可得a90,a100,由此可知0,0,0,0,0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 辽宁省 沈阳市 铁路 实验 中学 2015 _2016 学年 数学 学期 期中 试卷 解析
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内