中考数学二轮复习讲义 二次函数—动点相似.docx
《中考数学二轮复习讲义 二次函数—动点相似.docx》由会员分享,可在线阅读,更多相关《中考数学二轮复习讲义 二次函数—动点相似.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、二次函数 动点相似【教学目标】本节内容目标星级是否掌握直角相似钝角相似对应关系确定一、 直角相似本节内容目标星级是否掌握直角相似【知识点】【类型综述】函数中因动点产生的相似三角形问题一般有三个解题途径 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。【方法揭秘】相似三角形的判定定理有3
2、个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验如果已知AD,探求ABC与DEF相似,只要把夹A和D的两边表示出来,按照对应边成比例,分和两种情况列方程应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组)还有一种情况,讨论两个直角三角形相似,如果一组锐角相等,其中一个直角三角形的锐角三角比是确定的,那么就转化为讨论另一个三角形是直角三角形的问题求线段的长,
3、要用到两点间的距离公式,而这个公式容易记错理解记忆比较好如图1,如果已知A、B两点的坐标,怎样求A、B两点间的距离呢?我们以AB为斜边构造直角三角形,直角边与坐标轴平行,这样用勾股定理就可以求斜边AB的长了水平距离BC的长就是A、B两点间的水平距离,等于A、B两点的横坐标相减;竖直距离AC就是A、B两点间的竖直距离,等于A、B两点的纵坐标相减图1【例题讲解】例题1如图,已知二次函数yx2+bx+c(b,c为常数)的图象经过点A(3,1),点C(0,4),顶点为点M,过点A作ABx轴,交y轴与点D,交该二次函数图象于点B,连结BC(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向
4、上平移m(m0)个单位,使平移后得到的二次函数图象的顶点落在ABC的内部(不包含ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程)练习1抛物线yax2+bx5过A(2,3)、B(4,3)、C(6,5)三点(1)求抛物线的表达式;(2)如图,抛物线上一点D在线段AC的上方,DEAB,交AC于点E,若满足DEAE=52,求点D的坐标;(3)如图,F为抛物线顶点,过A作直线lAB,若点P在直线l上运动,点Q在x轴上动,是否存在这样的点P、Q,使得以B、P、Q为顶点的三角形与ABF相似?若
5、存在,求P、Q的坐标;若不存在,请说明理由练习2如图,抛物线y=12x2+32x+2与x轴交于点A,B,与y轴交于点C(1)试求A,B,C的坐标;(2)将ABC绕AB中点M旋转180,得到BAD求点D的坐标;判断四边形ADBC的形状,并说明理由;(3)在该抛物线对称轴上是否存在点P,使BMP与BAD相似?若存在,请直接写出所有满足条件的P点的坐标;若不存在,请说明理由【题型知识点总结】 二、 钝角相似本节内容目标星级是否掌握钝角相似【例题讲解】例题2已知:如图,在平面直角坐标系xOy中,抛物线y1=ax2+bx过点A(6,0)和点B(3,3)(1)求抛物线y1的解析式;(2)将抛物线y1沿x轴
6、翻折得抛物线y2,求抛物线y2的解析式;(3)在(2)的条件下,抛物线y2上是否存在点M,使OAM与AOB相似?如果存在,求出点M的坐标;如果不存在,说明理由练习1我们常见的炒菜锅和锅盖都是抛物面,经过锅心和盖心的纵断面是由两段抛物线组合而成的封闭图形,不妨简称为“锅线”锅口直径为6dm,锅深3dm,锅盖高1dm(锅口直径与锅盖直径视为相同),建立直角坐标系如图1所示,如果把锅纵断面的抛物线记为C1,把锅盖纵断面的抛物线记为C2(1)求C1和C2的解析式;(2)如图2,过点B作直线BE:y=13x1交C1于点E(2,53),连接OE、BC,在x轴上求一点P,使以点P、B、C为顶点的PBC与BO
7、E相似,求出P点的坐标;(3)如果(2)中的直线BE保持不变,抛物线C1或C2上是否存在一点Q,使得EBQ的面积最大?若存在,求出Q的坐标和EBQ面积的最大值;若不存在,请说明理由 练习2如图,二次函数yax2+2x+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3)(1)求该二次函数的表达式;(2)过点A的直线ADBC且交抛物线于另一点D,求直线AD的函数表达式;(3)在(2)的条件下,在x轴上是否存在一点P,使得以B、C、P为顶点的三角形与ABD相似?若存在,求出点P的坐标;若不存在,请说明理由【题型知识点总结】 三、 对应关系确定本节内容目标星级是否掌握对应关系确定【例题讲
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新中考数学资料 初中数学讲义 新教材数学专题 初中数学课件 初中数学学案 初中数学精品资料 初中数学专题 初中数学试卷 中考数学解题指导
限制150内