铜、铁表面组装磷酸酯类缓蚀功能分子膜实验技术的研究.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《铜、铁表面组装磷酸酯类缓蚀功能分子膜实验技术的研究.pdf》由会员分享,可在线阅读,更多相关《铜、铁表面组装磷酸酯类缓蚀功能分子膜实验技术的研究.pdf(119页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、山东大学博士学位论文铜、铁表面组装磷酸酯类缓蚀功能分子膜实验技术的研究姓名:郭文娟申请学位级别:博士专业:物理化学指导教师:陈慎豪20070416原创性声明本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的科研成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式标明。本声明的法律责任由本人承担。论文作者签名:社日关于学位论文使用授权的声明本人完全了解山东大学有关保留、使用学位论文的规定,同意学校保留或向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅;本人授权山
2、东大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其他复制手段保存论文和汇编本学位论文。(保密论文在解密后应遵守此规定)论文作者签名:兰馨交奉导师签名:论文作者签名:让墨釜导师签名:山东大学博:学位论文中文摘要自组装膜(S e l f-a s s e m b l e df i l m s)是活性分子通过化学键相互作用自发吸附在固一液或气一固界面而形成的具有一定取向、排列紧密的有序分子膜,是热力学稳定体系。固体暴露在活性分子的溶液或气氛中,便可自发形成自组装膜,它不要求无水或真空等特殊环境,也不需要特殊仪器。自组装膜因其在室温和常压条件下即可形成,且制备方法简单易
3、行,形成的膜致密有序,所以作为一种方便的成膜方法在工业和生活中具有广泛的应用前景,领域涉及到金属缓蚀、传感器制备、纳米材料科学、生物化学、医学等。特别是在金属腐蚀与防护领域,自组装膜技术已经成为一种新的金属表面修饰技术,发挥着越来越重要的作用。铜、铁是重要的商用金属,被广泛地应用于建筑业、化学工业、电子工业、航空航天等领域,但它们的化学性质较为活泼,暴露在空气或水中很容易被氧化。因此铜、铁的腐蚀与防护问题是腐蚀科学领域一个亟待解决的重要问题,已经引起科学家们的广泛关注。从金属腐蚀与防护的研究角度,选择合适的有机化合物在铜、铁表面进行自组装,并迸一步研究各种因素对成膜效果的影响,从而改进自组装实
4、验技术,具有重要的理论指导意义和应用价值。本论文的研究目的是找出合适的分子,改善实验技术,在铜、铁表面制备优良的具有缓蚀功能的自组装膜,有效地将金属与外界环境隔离开来,达到对金属腐蚀防护的效果。并研究各种成膜因素,例如浓度、自组装时间等对缓蚀效率的影响,从而寻找到一条较好的自组装成膜途径。实验中选用磷酸酯类化合物,在经过预处理的铜、铁金属表面进行自组装,通过电化学实验技术测试了腐蚀电位、电荷传递电阻、腐蚀电流密度、双电层电容等参数,从而得到自组装膜在电极上的表面覆盖度,反映自组装膜覆盖的铜、铁电极在腐蚀性溶液中的缓蚀效果。并用x 射线光电子能谱(X P S)和傅里叶变换红外光谱(F T-r R
5、)等表面分析技术对膜的成分进行测定,验证有机物在电极表面的吸附行为。扫拙电子显微镜(S E M)观测了自组装膜覆盖的电极表砷i 和空白电极表面的形貌I 矧,可以直接观测到膜对丛底的保护效果。分子模拟方法仡分子水i F 上提供了自纠装成膜分子在电极表面山东人学博f 7 学位论义的吸附信息,进一步解释了实验结果,还转而为选择、设计和合成一系列新型、低毒的自组装膜化合物提供一定的理论性指导。本实验在自组装过程中,首次添加磁场条件,突破了传统的仅采用浸泡自组装成膜的技术,改善了自组装膜的质量,从而为拓宽自组装膜技术提供了一个新思路。电化学实验测试研究了磁场强度对自组装膜成膜效果的影响。测试结果表明,磁
6、场的添加,大大增加了自组装膜的电荷传递电阻,有利于形成较为完善的自组装膜,提高膜的缓蚀效率。且缓蚀效率随磁场强度的增加而增大。本实验还制备了混合自组装膜。实验结果证明,混合膜的形成,有利于改,善单一自组装膜中存在的缺陷,有效提高了自组装膜的缓蚀效率。论文的主要研究内容、研究结果如下:1 铜表面自组装磷酸三乙酯(T E P)和磷酸三苯酯(T P P)膜铜电极在7t o o ld m。的硝酸溶液中刻蚀后,获得洁净的铜表面。在预处理过的铜电极表面分别制备T E P 和T P P 自组装膜。电化学阻抗谱测试结果显示,随着组装时问的延长,电荷传递电阻增大,双电层电容减小,常相位角元件的指数n 值增大,从
7、而说明膜的覆盖度增大,缓蚀效率增加。具体来说,T E P 和T P P 分子在铜上自组装膜的形成过程可以分为最初的快速吸附和随后的慢速重排过程。在最初的1 小时内,自组装膜的电荷传递电阻快速增加,T E P 自组装膜的覆盖度达到了8 1 O,T P P 自组装膜的覆盖度达到了8 5 4。随后的时间段内,膜的覆盖度继续增加,但增加速度缓慢。从1 小时到4 小时,再到1 2 小时,T E P 自组装膜的覆盖度增加为9 0 2,9 3 8,而T P P 自组装膜的覆盖度也增加为8 8 1,9 6 5。自组装时间为2 4 小时时,膜的覆盖度反而略有减小,T E P 自组装膜的覆盖度为8 5 3,T P
8、 P 自组装膜的覆盖度达为9 3 1。总的来说,在相同的自组装时间下,T E P,自组装膜和T P P 自组装膜相比,后者的致密度和缓蚀性能都高于前者。这可能是由于T P P 分子中含有苯环结构。苯环为平面结构,占有较大的空间,使T P P 分子在铜电极表面的覆盖度较大。x 射线光电子能谱(X P S)测试出分子中相关的元素峰,证明了有机物在铜电极表面的吸附行为。量子化学从头算方法计算了T E P 和T P P 分子的M i l l i k e n 电荷分布。结果表明,T E P 分子中,2山东大学博士学位论文处于P=O 键中的氧原子的电荷为一1 1 9 2e,三个-C H 3 基团中的碳原子
9、电荷分别为一1 2 3 3e,一1 2 3 4e 和一1 2 3 5e。考虑到一C H 3 中的碳原子被氢包围的情况,所以推测T E P 分子很有可能是通过P=O 键中的氧原子向铜的空轨道提供电子而吸附在铜电极表面的。而对于T P P 分子,结果显示,P=O 键中的氧原子的电荷密度是一1 1 6 4e,比分子中其它原子的电荷密度更负,所以T P P 也是通过P O键中的氧原予向铜的空轨道提供电子而吸附在铜电极表面的。还分别计算出T E P和T P P 分子的最高占据分子轨道(H O M 0)和最低未占据分子轨道(L U M O)的能量。T E P 分子的H O M O 为一1 0 5 1 6e
10、 V,L U M O 为一3 7 4 4e V:而T P P 分子的H O M O 为一1 0 0 1 0e V,L U M O 为-5 9 0 4e V。与T E P 分子相比,T P P 分子的H O M O 能量相对较高,L U M O 能量相对较低,从理论上解释了T P P 较T E P 分子更易吸附在铜表面的原因。实验和理论计算结果均表明,T P P 自组装膜具有较好的缓蚀效率。2 铁表面组装磷酸三苯酯(T P P)和-(2 一乙基己基1 磷酸酯(B E P)膜在铁电极表面分别制备T P P 和B E P 自组装膜。改变T P P 和B E P 溶液的浓度和组装时间,比较自组装膜的缓
11、蚀效率的变化。电化学测试结果表明,两种自组装膜均可有效的抑制铁在O 5t o o ld m-3H 2 S 0 4 溶液中的腐蚀反应,且缓蚀效率随磷酸酯溶液浓度和组装时间的增加而增加。电化学阻抗谱显示,l x l 0-st o o ld m-3T P P 自组装膜的电荷传递电阻在最初3 0m i n 内快速增大,4h 内即可达到最大值,此时膜的覆盖度为7 8 1,此后保持恒定。浓度增大为l x l 0 刁m o ld m-3 时,同样在最初的3 0 分钟内膜的电荷传递电阻快速增大,2h 内即可增大到最大值,此时膜的覆盖度为7 9 6,此后电荷传递电阻略有下降。而1 1 0 m o ld m 3
12、和l x l o o t o o l d m o B E P 自组装膜的电荷传递电阻均随组装时间的增加而逐渐增加。在相同的浸泡时间下,l x l 0 刁t o o ld m。T P P(或B E P)溶液中形成的自组装膜,其缓蚀效率要高于l 1 0 jm o ld m oT P P(或B E P)溶液中形成的自组装膜的缓蚀效率。极化曲线测试结果显示,T P P 和B E P 自组装膜覆盖的铁电极,其腐蚀电位F 移,且阳极和阴极腐蚀电流密度均减小,说明膜对铁的腐蚀有抑制作用,且腐蚀电流密度随组装l l,j I b J f 1 1 浓度的增加而减小。傅立叶转换红外光谱(F T-I R)山东大学牌
13、j 学位论文测试结果显示,谱图中出现的基团特征峰,均相对于T P P 和B E P 分子中的官能团,证明了T P P 和B E P 吸附在铁表面。分子模拟方法提供了T P P 和B E P 分子在铁上吸附的信息。结果显示,T P P 和B E P 吸附在铁基底后,均发生了一定程度的倾斜。3 磁场对自组装膜缓蚀效率的影响自组装过程中添加了磁场,首次研究了磁场强度对自组装成膜效果的影响。选取铜上自组装T E P 膜体系进行实验,T E P 浓度为1 x 1 0 3 m o ld m 一,组装时间为l 小时。电化学测试结果显示,与无磁场的情况相比,外加磁场有利于提高自组装膜对铜的缓蚀效率。且随磁场强
14、度的增加,缓蚀效率增加。磁场强度为8 0m T和1 6 0m T 时,T E P 自组装膜的缓蚀效率分别增大为9 4 2 和9 7 6,而无外加磁场时,T E P 自组装膜的缓蚀效率仅为8 1 O。据推测,T E P 为极性分子,在磁场中定向排列,外加磁场有利于T E P 分子在铜电极表面形成有序致密的膜,从而大大提高自组装膜的缓蚀效率。利用外加磁场的方法是一种全新的思路,它改善了单一浸泡的自组装膜实验技术,具有一定的研究和应用价值。4 混合自组装膜的制备为了改善单一自组装膜的缺陷,实验中制备了混合自组装膜。选取阳离子表面活性剂,十六烷基三甲基溴化铵(C T A B)与T E P 协同作用,在
15、铜电极表面形成混合自组装膜。先将铜电极浸入l 1 0。3 m o ld i n。T E P 乙醇溶液1 小时,形成T E P 单一自组装膜,然后放入1 X 1 0 3m o ld m 3C T A B 的水溶液中,组装1 小时或者2 4 小时,形成T E P 和C T A B 混合自组装膜。电化学阻抗谱显示,混合膜的电荷传递电阻要大于单一T E P 自组装膜的电荷传递电阻。计算出的单一T E P 自组装膜的覆盖度为8 1 O,而和C T A B 形成混合自组装膜后覆盖度最大可达到9 9 4。这说明和单一的T E P 自组装膜相比,C A T B 和T E P 协同形成的混合自组装膜对铜有更好的
16、防护作用。关键词:自组装膜:磷酸酯;电化学阻抗谱;混合膜;磁场4山东大学博士学位论文A B S T R A C TS e l f-a s s e m b l e df i l m sa r eo r d e r e da n dd e n s em o l e c u l a ra s s e m b l i e sf o r m e db yt h es p o n t a n e o u s l yc h e m i c a la d s o r p t i o no ft h ea c t i v em o l e c u l e so ns o l i ds n r f a c e T
17、 h e ya r et h et h e r m o d y n a m i c a l l ys t e a d ys y s t e m W h e nt h es o l i di se x p o s e dt ot h es o l u t i o no rg a sw i t ht h ea c t i v em o l e c u l e s,s e l f-a s s e m b l e df i l m sc a l lb ef o r m e da u t o m a t i c a l l y T h e yd on o tn e e dt h ee n v i r o
18、 n m e n t so fn ow a t e ro rv a c u u ma n dn o tn e e da n ys p e c i a li n s t r u m e n t S e l f-a s s e m b l e df i l m sa r ei d e a lm o d e l sf o rs t u d y i n gs o m ec o m p l e xp h e n o m e n ac o n c e r n i n ga b o u tt h es u r f a c e s,s i n c et h e i rs t r u c t u r e sa
19、r eq r d e f l ya n dC a l lb ed e s i g n e df l e x i b l y T h e yh a v et h ew i d e l ya p p l i c a t i o n si nm a n yf i e l d s,s u c ha sb i o c h e m i s t r y,n a n o-m a t e r i a l s,m e t a lc o r r o s i o na n ds e u s o r s B e c a u s eo ft h e i rd e n s e l yp a c k e da n ds t
20、a b l es t r u c t u r e s,s e l f-a s s e m b l e df i l m sp l a ya ni m p o r t a n tr o l ei nt h ef i e l do f s u r f a c em o d i f i c a t i o n,e s p e c i a l l yi nt h ef i e l do f t h ei n h i b i t i v ec o r r o s i o no f m e t a l s C o p p e ra n di r o na r ei m p o r t a n tm e t
21、 a l sw h i c ha r ew i d e l yu s e di nb u i l d i n g s,c h e m i s t r y,e l e c t r i ci n d u s t r a n de t c B u tt h e i rc h e m i c a lp r o p e r t yi sv e r ya c t i v e,a n dt h e yt e n dt ob eo x y g e n a t e dw h e ne x p o s e dt oa i ro rw a t e r T h u s,t h ec o r r o s i o ni
22、n h i b i t i o no fc o p p e ra n di r o nh a sb e c o m ea l li m p o r t a n tr e s e a r c hs u b j e c t T h et e c h n i q u eo fs e l f-a s s e m b l yi sp r a c t i c a l l ya n dt h e o r e t i c a l l ya d v a n t a g e o u si nt h ep r o t e c t i o no fm e t a l s F r o mt h ea s p e c t
23、o fc o r r o s i o ni n h i b i t i o no fm e t a l s,i ti sv e r yn e c e s s a r yt oc h o o s es o m ea p p r o p r i a t eo r g a n i cc o m p o u n d st os e l f-a s s e m b l eo nt h em e t a ls u r f a c e T h ep u r p o s eo f o u rr e s e a r c hi st of i n ds o m ep r o p e rs e l f-a s s
24、e m b l e ds y s t e m sa st h eb a r r i e rl a y e r sw h i c hC a ne f f i c i e n t l yi n s u l a t et h em e t a lf r o mt h ee x t e m a ls u r r o u n d i n g s P h o s p h a t e sw e r es e l e c t e dt op r e p a r es e l f-a s s e m b l e df i l m sO i lc o p p e ra n di r o ns u r f a c
25、e si no r d e rt op r o t e c tt h em e t a l sa g a i n s tc o r r o s i o n T h ei n h i b i t i v ee f f e c tW a sm e a s u r e db ye l e c t r o c h e m i c a lm e t h o d s,s u c ha se l e c t r o c h e m i c a li m p e d a n c es p e c t r o s c o p ya n dp o l a r i z a t i o nc u r v e s T
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 表面 组装 磷酸酯 类缓蚀 功能 分子 实验 技术 研究
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内