人工智能设备项目工程项目前期准备手册.docx
《人工智能设备项目工程项目前期准备手册.docx》由会员分享,可在线阅读,更多相关《人工智能设备项目工程项目前期准备手册.docx(106页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人工智能设备项目工程项目前期准备手册xx投资管理公司目录第一章 公司简介5一、 基本信息5二、 公司简介5三、 公司主要财务数据6第二章 现代工程咨询方法概述8一、 现代工程咨询方法的特点8二、 现代工程咨询方法框架10第三章 行业背景分析12第四章 数据采集分析与知识管理14一、 数据分析与挖掘概述14二、 大数据系统和数据挖掘技术16第五章 工程咨询信息及其管理21一、 工程咨询信息类型及来源21二、 工程咨询信息及其管理概述25第六章 资源环境承载力概述27一、 资源环境承载力的内涵27二、 资源环境承载力分析框架29第七章 规划咨询方法33一、 综合平衡方法33二、 模拟预测方法34第
2、八章 现金流量分析36一、 现金流量分析指标计算36二、 常用的资金等值换算公式45第九章 流动资金估算48一、 扩大指标估算法48二、 分项详细估算法48第十章 建设投资简单估算法52一、 工程费用估算52二、 建设投资汇总及建设投资合理性分析58第十一章 资产证券化方案分析60一、 资产证券化概念和特点60二、 资产证券化模式设计64第十二章 并购融资及债务重组75一、 公允价值估值方法75二、 并购融资方式80第十三章 财务分析概述89一、 财务分析的步骤89二、 财务分析的内容89第十四章 偿债能力分析和财务生存能力分析92一、 偿债能力分析92二、 相关报表编制97第十五章 经济分析
3、概述99一、 经济分析的基本方法99二、 经济分析的适用范围99第十六章 经济效益与费用的识别与计算102一、 直接效益与直接费用的识别与计算102二、 经济效益与费用的估算原则105第一章 公司简介一、 基本信息1、公司名称:xx投资管理公司2、法定代表人:毛xx3、注册资本:1500万元4、统一社会信用代码:xxxxxxxxxxxxx5、登记机关:xxx市场监督管理局6、成立日期:2016-7-127、营业期限:2016-7-12至无固定期限8、注册地址:xx市xx区xx9、经营范围:从事人工智能设备相关业务(企业依法自主选择经营项目,开展经营活动;依法须经批准的项目,经相关部门批准后依批
4、准的内容开展经营活动;不得从事本市产业政策禁止和限制类项目的经营活动。)二、 公司简介公司注重发挥员工民主管理、民主参与、民主监督的作用,建立了工会组织,并通过明确职工代表大会各项职权、组织制度、工作制度,进一步规范厂务公开的内容、程序、形式,企业民主管理水平进一步提升。围绕公司战略和高质量发展,以提高全员思想政治素质、业务素质和履职能力为核心,坚持战略导向、问题导向和需求导向,持续深化教育培训改革,精准实施培训,努力实现员工成长与公司发展的良性互动。公司将依法合规作为新形势下实现高质量发展的基本保障,坚持合规是底线、合规高于经济利益的理念,确立了合规管理的战略定位,进一步明确了全面合规管理责
5、任。公司不断强化重大决策、重大事项的合规论证审查,加强合规风险防控,确保依法管理、合规经营。严格贯彻落实国家法律法规和政府监管要求,重点领域合规管理不断强化,各部门分工负责、齐抓共管、协同联动的大合规管理格局逐步建立,广大员工合规意识普遍增强,合规文化氛围更加浓厚。三、 公司主要财务数据表格题目公司合并资产负债表主要数据项目2020年12月2019年12月2018年12月资产总额13096.7410477.399822.56负债总额4751.203800.963563.40股东权益合计8345.546676.436259.16表格题目公司合并利润表主要数据项目2020年度2019年度2018年
6、度营业收入50193.6940154.9537645.27营业利润11482.889186.308612.16利润总额10171.248136.997628.43净利润7628.435950.185492.47归属于母公司所有者的净利润7628.435950.185492.47第二章 现代工程咨询方法概述一、 现代工程咨询方法的特点现代工程咨询方法的特点是,定性分析和定量分析相结合,重视定量分析;静态分析与动态分析相结合,重视动态分析;统计分析与预测分析相结合,重视预测分析。定性分析与定量分析1定性分析定性分析是通过研究事物构成要素间的相互联系来揭示事物本质的方法,它是在逻辑分析、判断推理的基
7、础上,对客观事物进行分析与综合,从而找出事物发展内在规律性,确定事物的本质。在工程咨询研究中,许多难以用计量表达的场合,定性分析方法可以发挥重要作用。2定量分析定量分析是依据统计数据,选择建立合适的数学模型,计算出分析对象的各项指标及其数值的一种方法。它是通过反映一定质的事物量的关系来揭示事物内在规律的方法,在数学、统计学、运筹学、计量学、计算机等学科基础之上,通过方程、数学图表和模型等方式来研究事物的本质。在工程咨询工作中采用定量分析的方法,对复杂事物进行数据处理,进行比较分析,可以使问题更为清晰,解决方案更精确。静态分析与动态分析1静态分析静态分析是观测和评价事物某一时点状态的一种方法。如
8、项目评价中通过计算静态投资回收期、总投资收益率、资本金净利润率等指标,可以对项目的财务效益得出初步的判断。2动态分析在工程咨询服务的各个阶段,特别是在项目决策评价阶段,要树立动态观念,如考虑资金时间价值、市场供求变化、技术发展变化、社会经济环境的变化等。现代项目财务评价一般以动态分析为主,主要进行项目现金流量分析,计算财务净现值、内部收益率等指标,并进行风险概率分析等。统计分析与预测分析1统计分析统计分析是对分析对象过去和现在的信息进行收集、整理、统计和分析。在现代工程决策研究咨询中经常需要采取多种方法和渠道,收集大量的统计数据,包括行业、区域、市场、技术、企业等的统计资料和信息,从而分析、归
9、纳和总结事物的发展规律,把握发展动向;在项目执行阶段,也需要对项目的执行情况进行监控,对投资、质量、进度等进行统计分析,并与计划进行比较,判断项目的进展情况,以便采取有针对性的应对措施,促进项目的顺利进行。2预测分析预测分析是依据分析对象过去和现在的信息,采用一定的方法,对事物未来发展趋势进行分析、推测、判断的方法。预测分析是现代工程咨询的重要方法,尤其是在投资前期决策阶段,预测分析是项目咨询的重要工作。投资项目决策是建立在对未来预测的基础上的,需要对未来的社会经济环境、产业政策走向、技术发展趋势、市场需求变化、原材料供应、配套条件约束、资金市场等进行预测。二、 现代工程咨询方法框架(一)现代
10、工程咨询方法体系现代工程咨询方法体系包括哲学方法、逻辑方法和学科方法。哲学方法一般是辩证地分析事物的两面性,包括它的优点和缺点、正面效应和反面效应;逻辑方法是用概念、判断、推理、假说等逻辑思维形式,对事物进行归纳、演绎、综合;学科方法是利用各种学科中常用的研究方法,包括文献法、观察法、访谈法、问卷法、测量法和实验法、价值工程方法、网络控制方法、市场调查研究方法、战略规划研究方法、财务评价方法、经济评价方法、风险分析方法等。(二)常用现代工程咨询方法基于咨询工程师的基本能力要求,以项目周期的全过程咨询服务为主线,重点集中于投资项目前期咨询服务领域,常用的现代工程咨询方法包括综合分析、规划咨询、市
11、场分析、项目评价、项目管理等五大类,每一大类中又包括若干具体方法。需要说明的是,虽然我们将某一具体方法归于某一大类名下,但其并不是仅限应用于此类项目咨询领域,亦可应用于其他项目咨询中。如利益相关者分析法,经常应用于规划咨询,同时也常用于社会评价;如德尔菲法,不仅应用于市场预测,同时也应用于规划咨询、社会评价等。第三章 行业背景分析根据2020年全球人工智能产业地图,2020年,美国人工智能企业占全球总数的38.3%,中国排第二,占24.66%,中美两国依然占据人工智能领域内的绝对竞争优势。根据中国新一代人工智能发展战略研究院发布的最新中国新一代人工智能科技产业发展报告2021中对2205家人工
12、智能样本企业调研数据显示,创建时间主要集中在2012年至2018年之间,占比为63.93%,企业创建的峰值出现在2015年,占比为14.36%。其中,成立于2010年之前的企业相当大的比例在创建之初不属于人工智能企业,2010年之后通过自主研发和引进人工智能技术转型升级为人工智能企业。传统产业企业集中进入人工智能领域的时间为2013年至2015年。通过智能化转型,传统产业类人工智能企业大都成为人工智能科技产业发展中融合部门的主导者。分领域来看,我国人工智能企业广泛分布在20个应用领域,其中企业技术集成与方案、智慧商业和零售两个应用领域的企业数占比最高,分别为17.20%和10.31%。智能机器
13、人、智能硬件、科技金融、智慧医疗、智能制造领域企业数占比相对较高,分别为8.39%,8.06%,7.39%,7.27%,6.26%。企业技术集成与方案提供应用领域占比最高,说明在全面融合发展阶段突破应用领域的共性和关键技术是中国人工智能科技产业关注的焦点。从人工智能企业的技术层次分布看,应用层人工智能企业数占比最高,达到84.05%;其次是技术层企业数,占比为13.65%;基础层企业数占比最低,为2.30%。应用层企业占比高说明中国的人工智能科技产业是需求牵引的。从人工智能企业核心技术分布看,大数据和云计算占比最高,达到41.13%;其次是硬件、机器学习和推荐、服务机器人,占比分别为7.64%
14、,6.81%,5.64%;紧随其后,物联网、工业机器人、语音识别和自然语言处理、图形图像识别技术的占比依次为5.55%、5.47%、4.76%和4.72%。第四章 数据采集分析与知识管理一、 数据分析与挖掘概述(一)信息分析信息分析是根据咨询问题的具体需要,对与之有关的信息进行整理、鉴别、评价、分析和综合,以便取得咨询所需新信息的过程。信息分析有如下几种用途:1跟踪。所谓跟踪,就是及时了解各领域新动向、新发展,从而发现问题、提出问题。2比较。比较各种事物的内部矛盾之后,把握事物间的联系,认识事物的本质,从而提出问题、确定目标、拟定方案并作出选择。3预测。利用已掌握的信息、知识和手段,推断事物的
15、未来或未知方面。4评价。进行评价时应选择合适的变量和评价指标,应当考虑评价对象之间的可比性。信息分析所用方法,可分为定性和定量分析两种。定性方法主要靠逻辑推理;而定量方法涉及数据间的数量关系,要建立数学模型,计算、求解。如今,信息越来越复杂,定性与定量分析已无法单独奏效,只能越来越多地结合起来。(二)数据分析数据分析是信息分析的一部分,数据分析是对收集数据进行系统的分析,建立适当的模型,揭示数据中隐含的技术、经济、社会和其他关系,以及发展趋势,为有关的咨询活动提交的有用的数字、信息或建议。数据分析的对象可分为时间序列和截面数据。如企业历年的咨询收入、利润总额等就是时间序列。截面数据是在同一时间
16、的数据,如企业同一年咨询业务数目、营业额、费用、收入、人工耗费等。两种数据都要注意样本容量大小。对于截面数据,常用线性或非线性回归模型体现数据之间的各种关系。数据分析属定量分析,包括数据统计分析、时间数据分析、空间数据分析。(三)数据挖掘数据挖掘就是从数据中挖掘出隐含、先前未知、有潜在用途,最终可为人理解的关系、模式、趋势和其他有用信息,并建立模型,用于预测、判断或决策,帮助企业更好地适应变化并做出更明智的决策的过程。数据挖掘广泛应用于制造、金融、零售、保健、中医药及电信等行业的客户关系管理、风险防范、供应链管理、竞争优势分析、部门分析等领域。数据挖掘要用到统计分析、人工智能、数据库和神经网络
17、等方面的知识,如记忆推理、聚类分析、关联分析、决策树、神经网络、基因算法等。数据挖掘需要用户参与,并非某种单一工具、技术或软件即可独自完成。另一方面,并非所有信息查询都可视为数据挖掘。例如,使用数据库管理系统查找个别记录,或用搜索引擎查找互联网特定的网页,属于信息检索,不能视为数据挖掘。当然,数据挖掘技术也有强大的信息检索能力。二、 大数据系统和数据挖掘技术(一)数据挖掘概述1大数据大数据是指超过既往数据库系统规模、传输速度和处理能力,或者既往数据库系统结构无法容纳的数据。大数据常以万亿或EB衡量,且种类多、实时性强,蕴藏的商业价值大。很多现有的新或旧的信息基础设施、工具和技术可用来开发和利用
18、大数据中蕴藏的价值。大数据有各种各样的来源:传感器、气候信息、公开的信息、如杂志、报纸、文章、买卖记录、网络日志、病历、事监控、视频和图像档案,及大型电子商务。大数据是数据挖掘产生与生存发展的土壤。如今数据每五年翻一番,面对前所未有的海量数据,为了从中发现有用的信息必须进行数据挖掘。此外,计算机存储、处理大量数据,以及运算的能力大为增强,为数据挖掘创造了条件,使其成为一门独特的学科和技术。2数据挖掘与数据分析的区别数据挖掘与数据分析的主要区别在于:(1)处理工作量。数据分析的数据量可能并不大,而数据挖掘的数据量极大。(2)制约条件。数据分析是从某些假设出发,建立方程或模型,而数据挖掘不作假设,
19、可以自动建立方程。(3)处理对象。数据分析往往是针对数字型数据,而数据挖掘对象类型繁多,例如图像、声音、文本等。(4)处理结果。数据分析可以解释结果的含义;数据挖掘的结果不易解释,着眼于预测未来,并提出决策建议。想要从数据中发现规律(即认知),往往需将数据分析和数据挖掘结合起来。(二)数据挖掘步骤按挖掘对象,数据挖掘分为数据库与数据仓库挖掘和网络挖掘两种,各自步骤分述如下。1数据库与数据仓库挖掘数据挖掘一般有信息收集、数据集成、数据规约、数据清理、数据变换、数据挖掘、模式评估和知识表示8个步骤。(1)信息收集。从确定的挖掘对象中提取特征,然后选择合适的收集方法,将收集到的信息存入数据库。对于海
20、量数据,必须选择合适的数据仓库。(2)数据集成。把来源、格式、特点、性质不同的数据按逻辑或物理属性加以编排,以便以后使用。(3)数据规约。多数数据挖掘算法耗时很长,商业数据往往较多,数据挖掘更耗时间。数据规约就是简化已有可用数据集的表示,规约后数量大减,但仍能保持原数据的完整性,对规约数据的挖掘结果,与对规约前数据的挖掘结果相同或几乎相同。(4)数据清理。有些数据不完整(属性缺少属性值)、含噪声(属性值错误),不一致(同一信息有多种表示),需要清理,使其完整、正确、一致后存入数据仓库。(5)数据变换。将数据变换成适合数据挖掘的形式。实数型数据,可将其分层和离散化。(6)数据挖掘。根据数据格式、
21、属性与特点,选择合适的处理工具,例如统计方法、事例推理、决策树、规则推理、模糊集,甚至神经网络,取得有用的信息。(7)模式评估。由行业专家核实数据挖掘结果是否合理、是否可用。(8)知识表示。将数据挖掘得到的信息以可视方式交给用户,或作为新的知识存人知识库,供其他应用程序使用。并非所有的数据挖掘都要走上述的每一步。若只有一个数据源,则可以省略数据集成。数据规约、数据清理、数据变换合称数据预处理。数据挖掘至少60%的费用要花在信息收集阶段,而至少60%以上的精力和时间要花在数据预处理上。数据挖掘是一个反复多次的过程,若一次未满足要求或未得到有用结果,则需回到前面,经过调整后重新开始。2,网络挖掘网
22、络挖掘可分为网络用户行为挖掘与网络信息挖掘。前者基本不在工程咨询人员关心之列。后者可理解为“从WWW中发现和分析有用的信息”。网络信息挖掘是在已知数据样本的基础上,通过归纳学习、机器学习、统计分析等发现挖掘对象间的内在关系与特性,进而在网络中提取用户感兴趣的信息,获得更高层次的知识和规律。网络信息挖掘沿用了Robot,全文检索、人工智能的模式识别、神经网络等技术。现在的搜索引擎使用了这些技术,能够在网页或网站数据库中为用户搜寻有用信息。网络信息挖掘具体步骤如下:(1)确立目标样本。由用户选择目标文本,提取特征信息。(2)提取特征信息。根据目标样本的词频分布,从统计词典中提取挖掘目标的特征向量并
23、计算出相应的权值。(3)网络信息获取。先利用搜索引擎站点选择待采集站点,再利用Robot程序采集静态Web页面,最后获取被访问站点网络数据库中的动态信息,生成WWW资源索引库。(4)信息特征匹配。提取索引库中的源信息特征向量,并与目标样本的特征向量对照,将符合要求的信息交给用户。第五章 工程咨询信息及其管理一、 工程咨询信息类型及来源(一)信息类型工程咨询需要的信息,量大、面广。为了便于识别、分析、存储与保管,可从不同的角度将其分类。例如,从信息属性、来源、形态、用途、载体,是否随时而变或是否经过加工处理等角度划分。1不同属性的信息工程咨询中常用如下几种属性信息:(1)法律。国家、各级政府颁布
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 设备 项目 工程项目 前期 准备 手册
限制150内