全国各地2015年中考数学试卷解析分类汇编(第2期)专题37 操作探究.doc
《全国各地2015年中考数学试卷解析分类汇编(第2期)专题37 操作探究.doc》由会员分享,可在线阅读,更多相关《全国各地2015年中考数学试卷解析分类汇编(第2期)专题37 操作探究.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、操作探究一.选择题1(2015鄂州, 第8题3分)如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将ABE沿AE折叠,点B落在点F处,连接FC,则sinECF=() A B C D 考点: 翻折变换(折叠问题)分析: 过E作EHCF于H,由折叠的性质得BE=EF,BEA=FEA,由点E是BC的中点,得到CE=BE,得到EFC是等腰三角形,根据等腰三角形的性质得到FEH=CEH,推出ABEEHC,求得EH=,结果可求sinECF=解答: 解:过E作EHCF于H,由折叠的性质得:BE=EF,BEA=FEA,点E是BC的中点,CE=BE,EF=CE,FEH=CEH,AEB+
2、CEH=90,在矩形ABCD中,B=90,BAE+BEA=90,BAE=CEH,B=EHC,ABEEHC,AE=10,EH=,sinECF=,故选D点评: 本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等也考查了矩形的性质以及勾股定理2(2015湖北, 第12题3分)如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是() A AF=AE B ABEAGF C EF=2 D AF=EF考点: 翻折变换(折叠问题)分析: 设BE=x,表示出CE=8x,根据翻折的性质可得AE=CE,然后在RtABE中,利用勾股定理列出方程求出x,再
3、根据翻折的性质可得AEF=CEF,根据两直线平行,内错角相等可得AFE=CEF,然后求出AEF=AFE,根据等角对等边可得AE=AF,过点E作EHAD于H,可得四边形ABEH是矩形,根据矩形的性质求出EH、AH,然后求出FH,再利用勾股定理列式计算即可得解解答: 解:设BE=x,则CE=BCBE=8x,沿EF翻折后点C与点A重合,AE=CE=8x,在RtABE中,AB2+BE2=AE2,即42+x2=(8x)2解得x=3,AE=83=5,由翻折的性质得,AEF=CEF,矩形ABCD的对边ADBC,AFE=CEF,AEF=AFE,AE=AF=5,A正确;在RtABE和RtAGF中,ABEAGF(
4、HL),B正确;过点E作EHAD于H,则四边形ABEH是矩形,EH=AB=4,AH=BE=3,FH=AFAH=53=2,在RtEFH中,EF=2,C正确;AEF不是等边三角形,EFAE,故D错误;故选:D点评: 本题考查了翻折变换的性质,矩形的判定与性质,勾股定理,熟记各性质并作利用勾股定理列方程求出BE的长度是解题的关键,也是本题的突破口二.填空题1.2.3.三.解答题1(2015青岛,第23题10分)【问题提出】用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?【问题探究】不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以先从特殊入手,通过试验、观
5、察、类比、最后归纳、猜测得出结论【探究一】(1)用3根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,显然能搭成一种等腰三角形所以,当n=3时,m=1(2)用4根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形所以,当n=4时,m=0(3)用5根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分成2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形所以,当n=5时,m=1(4)用6根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?若分成1根木棒、1根
6、木棒和4根木棒,则不能搭成三角形若分成2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=6时,m=1综上所述,可得:表n3456m1011【探究二】(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的三角形?(仿照上述探究方法,写出解答过程,并将结果填在表中)(2)用8根、9根、10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表中)表n78910m2122你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,【问题解决】:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k1,4k,4k+1,4k+
7、2,其中k是正整数,把结果填在表中)表n4k14k4k+14k+2mkk1kk【问题应用】:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(写出解答过程),其中面积最大的等腰三角形每腰用了672根木棒(只填结果)考点:作图应用与设计作图;三角形三边关系;等腰三角形的判定与性质专题:分类讨论分析:探究二:仿照探究一的方法进行分析即可;问题解决:根据探究一、二的结果总结规律填表即可;问题应用:根据规律进行计算求出m的值解答:解:(1)用7根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?此时,能搭成二种等腰三角形,即分成2根木棒、2根木棒和3根木棒,则能搭成
8、一种等腰三角形分成3根木棒、3根木棒和1根木棒,则能搭成一种等腰三角形当n=7时,m=2(2)用8根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?分成2根木棒、2根木棒和4根木棒,则不能搭成一种等腰三角形,分成3根木棒、3根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=8时,m=1用9根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?分成3根木棒、3根木棒和3根木棒,则能搭成一种等腰三角形分成4根木棒、4根木棒和1根木棒,则能搭成一种等腰三角形所以,当n=9时,m=2用10根相同的木棒搭一个三角形,能搭成多少种不同的等腰三角形?分成3根木棒、3根木棒和4根木棒,则能搭成一种
9、等腰三角形分成4根木棒、4根木棒和2根木棒,则能搭成一种等腰三角形所以,当n=10时,m=2故答案为:2;1;2;2问题解决:由规律可知,答案为:k;k1;k;k问题应用:20164=504,5041=503,当三角形是等边三角形时,面积最大,20163=672,用2016根相同的木棒搭一个三角形,能搭成503种不同的等腰三角形,其中面积最大的等腰三角形每腰用672根木棒点评:本题考查的是作图应用与设计作图、三角形三边关系,首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图,根据三角形两边之和大于第三边和等腰三角形的性质进行解答2.(2015烟台,第25题1
10、4分)【问题提出】如图,已知ABC是等边三角形,点E在线段AB上,点D在直线BC上,且DE=EC,将BCE绕点C顺时针旋转至ACF,连接EF。试证明:AB=DB+AF。【类比探究】(1)如图,如果点E在线段AB的延长线上,其它条件不变,线段AB、DB、AF之间又有怎样的数量关系?请说明理由。(2)如果点E在线段BA的延长线上,其他条件不变,请在图的基础上将图形补充完整,并写出AB,DB,AF之间数量关系,不必说明理由。考点:三角形综合探究题分析:第一问是个明显的旋转问题,根据旋转的特点,我们能够得出CE=CF,即是等边三角形; ;,进而:,再有又由已知DE=CE,知,所以有,这样就能得出则有A
11、E=BD,所以AB=AE+BE=BD+AF。第(2)问,根据第一问的做法,我们应该像第(1)问那样去证明,全等的条件都是有AF=BE(旋转得出),DE=EF,这样关键就在于说明。要想说明这两个角相等,我们可以像第(1)问一样去证出,这样我们就能得出AFCD,此时我们需要把BD和EF的交点标示为G点,这样就有,接下来我们可以想办法证明(条件有一个公用角和小角),这样就得出了,所以就有,也就得出了三角形全等,这样就有AE=BD,所以这时AB=AE-BE=BD-AF。第(3)问画图略过,理由可以参考第(2)问。解答:【解】(1)根据旋转的性质得出EDB与FEA全等的条件BE=AF,再结合已知条件和旋
12、转的性质推出D=AEF,EBD=EAF=120,得出EDBFEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明DEBEFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.证明:DE=CE=CF,BCE由旋转60得ACF,ECF=60,BE=AF,CE=CF,CEF是等边三角形,EF=CE,DE=EF,CAF=BAC=60,所以EAF=BAC+CAF=120,DBE=120,EAF=DBE,又因为A,E,C,F四点共圆,所以AEF=ACF,又因为ED=DC,所以D=BCE,BCE=ACF,所以D=AEF,所以EDBFEA,所以BD=AF,AB=AE+BF,所以AB=BD
13、+AF类比探究(1)DE=CE=CF,BCE由旋转60得ACF,ECF=60,BE=AF,CE=CF,CEF是等边三角形,EF=CE,DE=EF,EFC=BAC=60,EFC=FGC+FCG,BAC=FGC+FEA,FCG=FEA,又FCG=EADD=EAD,D=FEA,由旋转知CBE=CAF=120,DBE=FAE=60DEBEFA,BD=AE, EB=AF,BD=FA+AB即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)点评:旋转、全等三角形、等边三角形、相似三角形3.(2015湖北省随州市,第24题10分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,E
14、AF=45,试判断BE、EF、FD之间的数量关系【发现证明】小聪把ABE绕点A逆时针旋转90至ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论【类比引申】如图(2),四边形ABCD中,BAD90,AB=AD,B+D=180,点E、F分别在边BC、CD上,则当EAF与BAD满足BAD=2EAF关系时,仍有EF=BE+FD【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD已知AB=AD=80米,B=60,ADC=120,BAD=150,道路BC、CD上分别有景点E、F,且AEAD,DF=40(1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长(结果取整
15、数,参考数据:=1.41,=1.73)考点:四边形综合题.分析:【发现证明】根据旋转的性质可以得到ADGABE,则GF=BE+DF,只要再证明AFGAFE即可【类比引申】延长CB至M,使BM=DF,连接AM,证ADFABM,证FAEMAE,即可得出答案;【探究应用】利用等边三角形的判定与性质得到ABE是等边三角形,则BE=AB=80米把ABE绕点A逆时针旋转150至ADG,根据旋转的性质可以得到ADGABE,则GF=BE+DF,只要再证明AFGAFE即可得出EF=BE+FD解答:【发现证明】证明:如图(1),ADGABE,AG=AE,DAG=BAE,DG=BE,又EAF=45,即DAF+BEA
16、=EAF=45,GAF=FAE,在GAF和FAE中,AFGAFE(SAS)GF=EF又DG=BE,GF=BE+DF,BE+DF=EF【类比引申】BAD=2EAF理由如下:如图(2),延长CB至M,使BM=DF,连接AM,ABC+D=180,ABC+ABM=180,D=ABM,在ABM和ADF中,ABMADF(SAS),AF=AM,DAF=BAM,BAD=2EAF,DAF+BAE=EAF,EAB+BAM=EAM=EAF,在FAE和MAE中,FAEMAE(SAS),EF=EM=BE+BM=BE+DF,即EF=BE+DF故答案是:BAD=2EAF【探究应用】如图3,把ABE绕点A逆时针旋转150至A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国各地2015年中考数学试卷解析分类汇编第2期专题37 操作探究 全国各地 2015 年中 数学试卷 解析 分类 汇编 专题 37 操作 探究
限制150内