《平面直角坐标系点的坐标的特征课件.ppt》由会员分享,可在线阅读,更多相关《平面直角坐标系点的坐标的特征课件.ppt(25页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于平面直角坐标系点的坐标的特征第1页,此课件共25页哦1.由点找坐标由点找坐标:如何表示点的位置如何表示点的位置?11-1-2-3-42323454-1-2-3-4-50(,)如何表示点的位置:如何表示点的位置:过点作过点作x轴的垂线,垂足在轴的垂线,垂足在x轴上对轴上对应的数是,就是点的横坐标应的数是,就是点的横坐标过点作过点作y轴的垂线,垂足在轴的垂线,垂足在y轴上对轴上对应的数是,就是点的纵坐标应的数是,就是点的纵坐标 有序数对(,)就是点的坐标有序数对(,)就是点的坐标xy x轴上的坐标轴上的坐标 (横坐标)(横坐标)写在前面写在前面第2页,此课件共25页哦x横轴横轴坐标是坐标是有序
2、有序的实数对。的实数对。写出图中写出图中A、B、C、D、E各点的坐标。各点的坐标。(3,2)(-2,1)(-4,-3)(1,-2)(2,3)012345-4-3-2-1B31425-2-4-1-3y纵轴纵轴CAED第3页,此课件共25页哦xO123-1-2-312-1-2-3y在平面直角坐标在平面直角坐标系中找到表示系中找到表示B(3,-2)B(3,-2)的点的点.由坐标找点的方法:由坐标找点的方法:先找到表示横坐标与纵坐标的点,先找到表示横坐标与纵坐标的点,然后过这两点分别作然后过这两点分别作x轴与轴与y轴的垂线,轴的垂线,垂线的交点就是该坐标对应的点。垂线的交点就是该坐标对应的点。B B第
3、4页,此课件共25页哦A31425-2-4-1-3012345-4-3-2-1x横轴y纵轴(3,2)CC(-4,1)方法:先横后纵方法:先横后纵B B(2 2,3 3)2由坐标找点:一个点的坐标是一个有序实数对DE(3,3)(5,4)3叫做点叫做点A的的横坐标横坐标2叫做点叫做点A的的纵坐标纵坐标A点在平面内的坐标为点在平面内的坐标为(3,2)记作:记作:A(3,2)平面直角坐标系上的平面直角坐标系上的点点和和有序实数对有序实数对一一对应一一对应第5页,此课件共25页哦口诀:横在前,纵在后,横在前,纵在后,两边括,中间逗。两边括,中间逗。第6页,此课件共25页哦根据点所在位置,用根据点所在位置
4、,用“+”“-”或或“0”添表添表点的位置横坐标符号纵坐标符号在第一象限 +在第二象限 在第三象限在第四象限在正半轴上在x轴上在负半轴上在正半轴上在y轴上在负半轴上 原点-+00-00+001、象限及坐标轴上点第7页,此课件共25页哦选一选下列点中位于第四象限的是(下列点中位于第四象限的是()A A、(、(2 2,-3-3)B B、(、(-2-2,-3-3)C C、(、(2 2,3 3)D D、(、(-2-2,3 3)如果如果xyxy0 0,且,且x xy y0 0,那么,那么p p(x,yx,y)在()在()A A、第一象限第一象限 B B、第二象限第二象限 C C、第三象限第三象限 D D
5、、第四象限、第四象限若点若点A A(x,yx,y)的坐标满足)的坐标满足xyxy0,x0,x0 0,则点,则点A A在(在()上)上 A A、第一象限第一象限 B B、第二象限第二象限 C C、第三象限第三象限 D D、第四象限、第四象限在点在点M M(-1-1,0 0)、)、N N(0 0,-1-1)、)、P P(-2-2,-1-1)、)、O O(5 5,0 0)、)、R R(0 0,-5-5)、)、S S(-3-3,2 2)中,在)中,在x x轴上的点的个数是(轴上的点的个数是()A A、1 B1 B、2 C2 C、3 D3 D、4 41、2、3、4、ABCB第8页,此课件共25页哦巩固练
6、习:1、点A(0,-1)的位置在平面直角坐标系的。2、若点(+,-)在轴上,则点的坐标为 。3、若点P(x,y)的坐标满足xy=0,则点p在()A 原点 B x轴上 C y轴上 D x轴上或y轴上y轴负半轴轴负半轴(7,2)D4、如果点(、如果点(2m,m-4)在第四象限,且)在第四象限,且m为偶数,则为偶数,则m=.2第9页,此课件共25页哦XyPP1P2P3(a,b)(a,b)(a,b)(a,b)知识一:关于知识一:关于坐标轴、原点对称的点的坐标坐标轴、原点对称的点的坐标第10页,此课件共25页哦想一想想一想分别写出图中点A、B、C、D的坐标。观察图形,并回答问题(3,2)(3,-2)-2
7、-14321-3-4-4y123-3-1-2(-3,2)(-3,-2)0关于关于x轴对称的点的横坐标相同轴对称的点的横坐标相同,纵坐标互为相反数纵坐标互为相反数关于关于y轴对称的点的纵坐标相同轴对称的点的纵坐标相同,横坐标互为相反数横坐标互为相反数关于原点对称的点的横坐标关于原点对称的点的横坐标、纵坐标都互为相反数纵坐标都互为相反数A BCD第11页,此课件共25页哦1关于关于x轴对称的点的横坐标相同轴对称的点的横坐标相同,纵坐标互为相反数纵坐标互为相反数口诀:关于关于x轴对称的点的坐标,纵变、横不变。轴对称的点的坐标,纵变、横不变。2关于关于y轴对称的点的纵坐标相同轴对称的点的纵坐标相同,横
8、坐标互为相反数横坐标互为相反数口诀:关于关于y轴对称的点的坐标,横变、纵不变。轴对称的点的坐标,横变、纵不变。3关于原点对称的点的横坐标关于原点对称的点的横坐标、纵坐标都互为相反数纵坐标都互为相反数口诀:关于原点对称的点的坐标,横、纵都变。关于原点对称的点的坐标,横、纵都变。口诀:关于哪轴对称那哪轴对称那不变,不变,关于原点对称全部变 第12页,此课件共25页哦知识点二:点到知识点二:点到坐标轴坐标轴的的距离距离过点作过点作x x轴的轴的垂线段的长度垂线段的长度叫做点到叫做点到x x轴的距离轴的距离.过点作过点作y y轴的轴的垂线段的长度垂线段的长度叫做点到叫做点到y y轴的距离轴的距离.点点
9、P P(x,yx,y)到)到x x轴轴的距离等于的距离等于 y 点点P P(x,yx,y)到)到y y轴轴的距离等于的距离等于 x 直角坐标平面内直角坐标平面内,点点p(x,y)到到x轴的距离是轴的距离是_,到到y轴的距离是轴的距离是_.21xx-x轴上两点轴上两点M1(x1,0),M2(x2,0)的距离的距离M1M2=,Y轴上两点轴上两点N1(0,y1),N2(0,y2)的距离的距离 N1N2=.第13页,此课件共25页哦1、已知点M(2,-3),则M到x轴的距离为,到轴的距离为 。2、已知点P到x轴和y轴的距离分别是2和5,求P点的坐标。32P(5,2)或或P(5,-2)或或P(-5,2)
10、或或P(-5,-2)3、点、点P的坐标为的坐标为(3,2),你知道点,你知道点P到到X轴的距离吗?到轴的距离吗?到Y轴的距离又是多少呢?在第二象限,到轴的距离又是多少呢?在第二象限,到X轴的距离为轴的距离为3,到,到Y轴的距离为轴的距离为2的点的坐标是多少呢?的点的坐标是多少呢?013 4-1-2-3134-1-2yxP(3,2)第14页,此课件共25页哦 动一动,动一动,方格纸上分别描出下列点的看看这些点方格纸上分别描出下列点的看看这些点在什么位置上,由此你有什么发现?在什么位置上,由此你有什么发现?-4 3 2 1 0 1 2 3 4 5 -1-2-3-4xyA (2,3)B (2,-1)
11、C (2,4)D (2,0)E (2,-5)F (2,-4)ABDEFC第15页,此课件共25页哦三、平行于坐标轴点的特征三、平行于坐标轴点的特征1.平行于平行于横轴横轴的直线上的点的的直线上的点的纵坐标相同纵坐标相同;2.平行于平行于纵轴纵轴的直线上的点的的直线上的点的横坐标相同横坐标相同。练习练习1:1:已知点已知点A(m,-2),A(m,-2),点点B(3,m-1),B(3,m-1),(1)(1)若直线若直线ABxABx轴轴,则则m=_m=_(2)(2)若直线若直线AByABy轴轴,则则m=_m=_2.2.已知已知ABxABx轴,轴,A A点的坐标为(点的坐标为(3 3,2 2),并且)
12、,并且ABAB5 5,则,则B B的坐标为的坐标为 。-13(8 8,2 2)或(或(-2-2,2 2)第16页,此课件共25页哦巩固练习:巩固练习:1.点(,)到点(,)到x轴的距离为轴的距离为;点(;点(-,)到,)到y轴轴的距离为的距离为;点;点C到到x轴的距离为轴的距离为1,到,到y轴的距离为轴的距离为3,且在第,且在第三象限,则三象限,则C点坐标是点坐标是。42.点点C到到x轴的距离为轴的距离为1,到,到y轴的距离为轴的距离为3,则,则C点坐标是点坐标是 。(3,1)或或(-3,1)或或(-3,-1)或或(3,-1)(-3,-1)第17页,此课件共25页哦填 一 填1、在平面直角坐标
13、系中,若点、在平面直角坐标系中,若点A(1,3)与)与 B(x,3)点之间的距离为)点之间的距离为4,则,则x的值是的值是_。2、在平面直角坐标系中,若点、在平面直角坐标系中,若点A(2,y)与)与B(2,1)点之间的距离为)点之间的距离为4,则,则x的值是的值是_。第18页,此课件共25页哦3 3.已知点已知点P P(3 3,a a),并且),并且P P点到点到x x轴的距轴的距离是离是2 2个单位长度,求个单位长度,求P P点的坐标。点的坐标。分析:由一个点到分析:由一个点到x x轴的距离是该点纵轴的距离是该点纵坐标的绝对值,所以坐标的绝对值,所以a a的绝对值等于的绝对值等于2 2,这样
14、这样a a的值应等于的值应等于22。解:因为解:因为P P到到X X轴的距离是轴的距离是2 2,所以,所以,a a的值可以等于的值可以等于22,因此,因此P P(3 3,2 2)或)或P P(3 3,-2-2)。)。第19页,此课件共25页哦巩固练习:巩固练习:1.1.点(点(3 3,-2-2)在第)在第_象限象限;点(点(-1.5-1.5,-1-1)在第在第_象限;点(象限;点(0 0,3 3)在)在_轴上;轴上;若点(若点(a+1a+1,-5-5)在)在y y轴上,则轴上,则a=_.a=_.4 4.若点若点P P在第三象限且到在第三象限且到x x轴的距离为轴的距离为 2 2 ,到到y y轴
15、的距离为轴的距离为1.51.5,则点,则点P P的坐标是的坐标是_。3.3.点点 M M(-8-8,1212)到)到 x x轴的距离是轴的距离是_,到到 y y轴的距离是轴的距离是_._.2.2.点点A A在在x x轴上,距离原点轴上,距离原点4 4个单位长度,则个单位长度,则A A点的坐标是点的坐标是 _。5.5.点点A A(1-a1-a,5 5),),B B(3,b3,b)关于)关于y y轴对称,轴对称,则则a=_,b=_a=_,b=_。四四三三y-1(4,0)或或(-4,0)128(-1.5,-2)45第20页,此课件共25页哦7.7.如果同一直角坐标系下两个点的横坐标相同,那么如果同一
16、直角坐标系下两个点的横坐标相同,那么过这两点的直线(过这两点的直线()(A A)平行于)平行于x x轴轴 (B B)平行于)平行于y y轴轴(C C)经过原点)经过原点 (D D)以上都不对)以上都不对8.8.若点(若点(a,b-1)a,b-1)在第二象限,则在第二象限,则a a的取值范围的取值范围是是_,b b的取值范围的取值范围_。9.实数实数 x,y满足满足(x-1)2+|y|=0,则点,则点 P(x,y)在)在【】.(A)原点)原点 (B)x轴正半轴轴正半轴(C)第一象限)第一象限 (D)任意位置)任意位置6.在平面直角坐标系内在平面直角坐标系内,已知点已知点P(a,b),且且a b
17、0,则点则点P的位置在的位置在_。第二或四象限第二或四象限B Ba1B B第21页,此课件共25页哦7.7.如果同一直角坐标系下两个点的横坐标相同,那如果同一直角坐标系下两个点的横坐标相同,那么过这两点的直线(么过这两点的直线()(A A)平行于)平行于x x轴轴 (B B)平行于)平行于y y轴轴(C C)经过原点)经过原点 (D D)以上都不对)以上都不对8.8.若点(若点(a,b-1)a,b-1)在第二象限,则在第二象限,则a a的取值范围是的取值范围是_,b b的取值范围的取值范围_。9.实数实数 x,y满足满足(x-1)2+|y|=0,则点,则点 P(x,y)在)在【】.(A)原点)
18、原点 (B)x轴正半轴轴正半轴(C)第一象限)第一象限 (D)任意位置)任意位置6.在平面直角坐标系内在平面直角坐标系内,已知点已知点P(a,b),且且a b 0,则点则点P的位置在的位置在_。第二或四象限第二或四象限B Ba1B B第22页,此课件共25页哦拓展归纳一:特殊位置点的坐标拓展归纳一:特殊位置点的坐标(1 1)平行平行于于坐标轴坐标轴的点的坐标的点的坐标1.平行于平行于横轴横轴的直线上的点的的直线上的点的纵坐标相同纵坐标相同;2.平行于平行于纵轴纵轴的直线上的点的的直线上的点的横坐标相同横坐标相同。练习练习1:1:已知点已知点A(m,-2),A(m,-2),点点B(3,m-1),
19、B(3,m-1),(1)(1)若直线若直线ABxABx轴轴,则则m=_m=_(2)(2)若直线若直线AByABy轴轴,则则m=_m=_2.2.已知已知ABxABx轴轴,A,A点的坐标为点的坐标为(3,2),(3,2),并且并且ABAB5,5,则则B B的坐标为的坐标为 。-13(8 8,2 2)或(或(-2-2,2 2)第23页,此课件共25页哦拓展归纳二:特殊位置点的坐标拓展归纳二:特殊位置点的坐标(3 3)象限)象限角平分线角平分线上的点的坐标上的点的坐标012345-4-3-2-131425-2-4-1-3xyABp(x,y)横横,纵坐标纵坐标第一三象限角第一三象限角平分线上平分线上第二四象限角第二四象限角平分线上平分线上x =yx=-y1已知点已知点A(3a+5,4a-3)在第一三象在第一三象限角平分线上,则限角平分线上,则a=2已知点已知点A(3-m,2m-5)在第二四象在第二四象限角平分线上,则限角平分线上,则m=823.已知点已知点A(3+a,2b+9)在第二象限的角平分线上,且)在第二象限的角平分线上,且a、b互为相反互为相反数,则数,则a、b的值分别是的值分别是_。6,-6第24页,此课件共25页哦感感谢谢大大家家观观看看第25页,此课件共25页哦
限制150内