勾股定理及逆定理证明讲稿.ppt
《勾股定理及逆定理证明讲稿.ppt》由会员分享,可在线阅读,更多相关《勾股定理及逆定理证明讲稿.ppt(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、关于勾股定理及逆定理证明第一页,讲稿共二十四页哦驶向胜利的彼岸勾股定理如果直角三角形两直角边分别为如果直角三角形两直角边分别为a、b,斜边为,斜边为c,那么那么a2+b2=c2.即直角三角形两直角边的平方和等于即直角三角形两直角边的平方和等于斜边的平方斜边的平方.勾股定理在西方文献中又称为毕达哥拉勾股定理在西方文献中又称为毕达哥拉斯定理(斯定理(pythagoras theorem).开启 智慧acb勾勾弦弦股股第二页,讲稿共二十四页哦驶向胜利的彼岸勾股定理的证明勾股定理的证明 我能行我能行1 1l方法一方法一:拼图计算拼图计算l方法二方法二:割补法割补法l方法三方法三:赵爽的弦图赵爽的弦图l
2、方法四方法四:总统证法总统证法l方法五方法五:青朱出入图青朱出入图l方法六方法六:折纸法折纸法l方法七方法七:拼图计算拼图计算这些证法你还能记得多少这些证法你还能记得多少?你你最喜欢哪种证法最喜欢哪种证法?第三页,讲稿共二十四页哦总统证法总统证法 回顾反思回顾反思1 1这个证明方法出自一位总统这个证明方法出自一位总统,1881年,伽菲尔德年,伽菲尔德(J.A.Garfield)就任美国第二十任总统就任美国第二十任总统,在在 1876,利用了梯形面积公式。利用了梯形面积公式。图中三个三角形面积的和是图中三个三角形面积的和是梯形面积为梯形面积为(a+b)(a+b)/2;比较可得比较可得:c2=a2
3、+b2。ababcc第四页,讲稿共二十四页哦驶向胜利的彼岸勾股定理的逆定理勾股定理的逆定理 我能行我能行2 2l如果三角形两边的平方和等于第三边如果三角形两边的平方和等于第三边 平方平方,那么这个三角形是直角三角形那么这个三角形是直角三角形.l已知已知:如图如图(1),(1),在在ABCABC中中,AC,AC2 2+BC+BC2 2=AB=AB2 2.l求证求证:ABC:ABC是直角三角形是直角三角形.acbABC(1)第五页,讲稿共二十四页哦逆定理的证明逆定理的证明 我能行我能行2 2证明证明:作作Rt Rt ABCABC使使 C C90900 0,A AC CACAC B BC CBC(B
4、C(如图如图),),则则acbABC(1)acbBAC(2)A AC C2 2B BC C2 2A AB B2 2 (勾股定理勾股定理)ACAC2 2BCBC2 2ABAB2 2(已知已知),),A AC CAC,AC,B BC CBCBC(已作已作)第六页,讲稿共二十四页哦 ABC ABC(SSS)ABC ABC(SSS)C=C C=C 90900 0 (全等三角形的对应角相等全等三角形的对应角相等)ABC ABC是直角三角形是直角三角形 (直角三角形定义直角三角形定义).).AB AB2 2ABAB2 2(等式性质等式性质)AB ABAB(AB(等式性质等式性质)acbABC(1)acbB
5、AC(2)第七页,讲稿共二十四页哦几何的几何的三种语言三种语言 回顾反思回顾反思1 1w勾股定理的逆定理勾股定理的逆定理l如果三角形两边的平方和等于第三边平方如果三角形两边的平方和等于第三边平方,那么这个三角形是直角三角形那么这个三角形是直角三角形这是判定直角三角形的根据之一l在在ABCABC中中ACAC2 2BCBC2 2ABAB2 2(已知已知),),ABCABC是直角三角形是直角三角形(如果三角形两边的如果三角形两边的 平方和等于第三边平方平方和等于第三边平方,那么这个三角形那么这个三角形 是直角三角形是直角三角形).).acbABC(1)第八页,讲稿共二十四页哦驶向胜利的彼岸命题与逆命
6、题命题与逆命题1、直角三角形两直角边的平方和等于斜边的、直角三角形两直角边的平方和等于斜边的 平方平方2、如果三角形两边的平方和等于第三边平方如果三角形两边的平方和等于第三边平方,那么这个三角形是直角三角形那么这个三角形是直角三角形w观察上面两个命题观察上面两个命题,它们的条件与结论之间它们的条件与结论之间 有怎样的关系有怎样的关系?与同伴交流与同伴交流.开启 智慧第九页,讲稿共二十四页哦w再观察下面三组命题再观察下面三组命题:w如果两个角是对顶角如果两个角是对顶角,那么它们相等那么它们相等w如果两个角相等如果两个角相等,那么它们是对顶角那么它们是对顶角w如果小明患了肺炎如果小明患了肺炎,那么
7、他一定会发烧那么他一定会发烧w如果小明发烧如果小明发烧,那么他一定患了肺炎那么他一定患了肺炎w三角形中相等的边所对的角相等三角形中相等的边所对的角相等w三角形中相等的角所对的边相等三角形中相等的角所对的边相等.w上面每组中两个命题的条件和结论之间也有上面每组中两个命题的条件和结论之间也有 类似的关系吗类似的关系吗?与同伴进行交流与同伴进行交流.第十页,讲稿共二十四页哦驶向胜利的彼岸命题与逆命题命题与逆命题w在两个命题中在两个命题中,如果一个命题的如果一个命题的条件条件和和结论结论分别是另分别是另一个命题的一个命题的结论结论和和条件条件,那么这两个命题称为那么这两个命题称为互逆互逆命题命题,其中
8、一个命题称为另一个命题的其中一个命题称为另一个命题的逆命题逆命题.开启 智慧你能写出命题你能写出命题“如果两个有理数相等如果两个有理数相等,那么它们的那么它们的平方相等平方相等”的逆命题吗的逆命题吗?w它们都是真命题吗它们都是真命题吗?第十一页,讲稿共二十四页哦驶向胜利的彼岸定理与逆定理定理与逆定理w一个一个命题命题是真命题是真命题,它逆命题却它逆命题却不一定不一定是真命题是真命题开启 智慧w如果一个如果一个定理定理的逆命题经过证明是真命题的逆命题经过证明是真命题,那么它那么它 是一个是一个定理定理,这两个定理称为这两个定理称为互逆定理互逆定理,其中一个其中一个 定理称另一个定理的定理称另一个
9、定理的逆定理逆定理.第十二页,讲稿共二十四页哦 想一想想一想w互逆命题与互逆定理有何关系互逆命题与互逆定理有何关系?w我们已经学习了一些互逆的定理我们已经学习了一些互逆的定理,如如:w勾股定理及其逆定理勾股定理及其逆定理w两直线平行两直线平行,内错角相等内错角相等;内错角相等内错角相等,两直线平行两直线平行.第十三页,讲稿共二十四页哦蓄势待发蓄势待发 隋堂练习隋堂练习1 1驶向胜利的彼岸说出下列合理的逆命题说出下列合理的逆命题,并判断每对并判断每对命题的真假命题的真假:w四边形是多边形四边形是多边形;w两直线平行两直线平行,同旁内角互补同旁内角互补;w如果如果ab=0,那么那么a=0,b=0.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 逆定理 证明 讲稿
限制150内