2020-2021学年陕西省西安市某校高一(上)12月月考数学试卷.docx
《2020-2021学年陕西省西安市某校高一(上)12月月考数学试卷.docx》由会员分享,可在线阅读,更多相关《2020-2021学年陕西省西安市某校高一(上)12月月考数学试卷.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2020-2021学年陕西省西安市某校高一(上)12月月考数学试卷一、选择题1. 下列各组几何体中全是多面体的一组是( ) A.三棱柱四棱台球圆锥B.三棱柱四棱台正方体圆台C.三棱柱四棱台正方体六棱锥D.圆锥圆台球半球2. 如图,已知OAB的直观图OAB是一个斜边边长是2的等腰直角三角形,那么OAB的面积是() A.12B.22C.1D.23. 如图,长方体ABCDA1B1C1D1中,AA1=AB=2,AD=1,E,F,G分别是DD1,AB,CC1的中点,则异面直线A1E与GF所成角为( ) A.30B.45C.60D.904. 一条直线和两异面直线b,c都相交,则它们可以确定( ) A.一个
2、平面B.两个平面C.三个平面D.四个平面5. 在正方体ABCDA1B1C1D1中,与对角线AC1异面的棱有( ) A.3条B. 4条 C. 5条 D. 6条 6. 如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( ) A.B.C.D.7. 函数fx=x22x8零点是( ) A.2和4B.2和4C.2,0和4,0D.2,0和4,08. 函数fx=3x+lnx的零点个数为( ) A.0B.1C.2D.39. 函数f(x)=lnx+x39的零点所在的区间为( ) A.(0,1)B.(1,2)C.(2,3)D.(3,4)
3、10. 设f(x)=(12)xx+1,用二分法求方程(12)xx+1=0在(1,3)内近似解的过程中,f(1)0,f(1.5)0,f(2)0,f(3)0,则方程的根落在区间( ) A.(1,1.5)B.(1.5,2)C.(2,3)D.无法确定二、填空题 空间四边形ABCD中,E,F,H,G分别为边AB,AD,BC,CD的中点,则BD与平面EFGH的位置关系是_ 在长方体ABCDA1B1C1D1中,点E在棱AB上移动,且平面EB1D1与平面ABCD交于直线L,则L与B1D1的关系是_ 过平面外一点作该平面的平行线有_条 如图所示,四棱锥SABCD中,底面ABCD是平行四边形,E,F分别为棱SD,
4、SC的中点,G为线段AC上一点且满足AG=13AC,试将直线SB与平面EFG的位置关系填在横线上_(用“相交”、“平行”、或“在平面内”填空) 三、解答题 如图,在正方体ABCDA1B1C1D1中,E,F分别为AB1,BD的中点 (1)求证: EF/平面BCC1B1; (2)求直线EF与直线AA1所成的角. 如图,正方体ABCDA1B1C1D1中,M,N,E,F分别是棱A1B1,A1D1,B1C1,C1D1的中点求证:平面AMN/平面EFDB 如图,四棱柱ABCDA1B1C1D1中,BC/AD,平面A1DCE与B1B交于点E.证明:EC/A1D. 如图,已知E、F、G、H分别是三棱锥ABCD的
5、梭AB、BC、CD、DA的中点求证:E、F、G、H四点共面. 在正方体ABCDAB1C1D1中,求异面直线AC1与B1D1所成的角的大小 已知正方体ABCDA1B1C1D1 1写出正方体的12条棱所在的直线中与直线BC1异面的直线; (2)求直线BC1与AC所成角的大小参考答案与试题解析2020-2021学年陕西省西安市某校高一(上)12月月考数学试卷一、选择题1.【答案】C【考点】旋转体(圆柱、圆锥、圆台)棱柱的结构特征棱台的结构特征棱锥的结构特征【解析】题目中四个选项中的几何体有多面体,也有旋转体,借助于多面体和旋转体的概念逐一判断即可得到正确答案【解答】解:选项A中的球和圆锥是旋转体,所
6、以A不正确;B中的圆台是旋转体,所以B不正确;D中的四个几何体全是旋转体,所以D不正确;只有C中的四个几何体符合多面体概念故选C.2.【答案】B【考点】三角形求面积平面图形的直观图【解析】 【解答】解:直观图的平面图形OAB是直角三角形,直角边长为:2和22,那么OAB的面积为:12222=22故选B.3.【答案】D【考点】异面直线及其所成的角【解析】此题暂无解析【解答】解:将EA1平移到GB1,连接FB1,如图所示,则FGB1就是异面直线所成的角因为FB1=5,GB1=2,FG=CG2+CF2=1+1+1=3,FB12=FG2+GB12,所以FGB1=90故选D.4.【答案】B【考点】异面直
7、线的判定【解析】此题暂无解析【解答】解: 两条相交的直线可以确定一个平面,一条直线和两异面直线b,c都相交, 它们可以确定两个平面.故选B.5.【答案】D【考点】异面直线的判定【解析】此题暂无解析【解答】解:在正方体的每个面上都有一条棱和对角线AC1异面,它们分别为:A1B1、BC、DC、A1D1、BB1,DD1共有6条,故选D.6.【答案】A【考点】直线与平面平行的判定【解析】利用线面平行判定定理可知B、C、D均不满足题意,从而可得答案【解答】解:对于选项B,由于AB/MQ,结合线面平行判定定理可知B不满足题意;对于选项C,由于AB/MQ,结合线面平行判定定理可知C不满足题意;对于选项D,由
8、于AB/NQ,结合线面平行判定定理可知D不满足题意;所以选项A满足题意.故选A7.【答案】B【考点】函数的零点【解析】令fx=x22x8=0,求出x的值即为函数的零点.【解答】解:令fx=x22x8=0,可得x=4或2, 函数fx=x22x8零点是2和4.故选B.8.【答案】B【考点】函数的零点与方程根的关系函数的零点【解析】此题暂无解析【解答】解:令f(x)=0,故3x=lnx,在同一直角坐标系中分别作出y=3x,y=lnx的大致图象如图所示,观察可知,它们有1个交点,即函数fx=3x+lnx的零点个数为1故选B9.【答案】C【考点】函数零点的判定定理函数单调性的性质【解析】根据函数f(x)
9、在(0,+)上是增函数,f(2)0,可得函数f(x)在区间(2,3)上有唯一的零点【解答】解:由于函数f(x)=lnx+x39在(0,+)上是增函数,f(2)=ln210,故函数f(x)=lnx+x39在区间(2,3)上有唯一的零点.故选C10.【答案】A【考点】二分法求方程的近似解函数零点的判定定理【解析】根据用二分法求方程近似解的步骤,及函数零点与方程根的关系,我们可根据方程在区间(a,b)上有零点,则f(a)f(b)0,f(1.5)0,f(2)0,f(3)0,f(1)f(1.5)0,故方程的根落在区间(1,1.5).故选A.二、填空题【答案】平行【考点】直线与平面平行的判定【解析】利用三
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高一 数学
限制150内