中考初中数学基础巩固复习专题(九) 图形的变换与四边形.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《中考初中数学基础巩固复习专题(九) 图形的变换与四边形.docx》由会员分享,可在线阅读,更多相关《中考初中数学基础巩固复习专题(九) 图形的变换与四边形.docx(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考初中数学基础巩固复习专题(九) 图形的变换与四边形【知识要点】 知识点1:图形的变换与镶嵌知识点2:四边形的定义、判定及性质知识点3:矩形、菱形及正方形的判定知识点4:矩形、菱形及正方形的性质知识点5:梯形的判定及性质【复习点拨】1、掌握平移、旋转、对称的性质,灵活地运用平移、旋转、对称解决生活中的问题。2、掌握平行四边形、矩形、菱形、正方形及梯形的定义、判定、性质,利用这些特殊四边形进行综合计算和证明。【典例解析】例题1:(2017山东枣庄)将数字“6”旋转180,得到数字“9”,将数字“9”旋转180,得到数字“6”,现将数字“69”旋转180,得到的数字是()A96B69C66D99
2、【考点】R1:生活中的旋转现象【分析】直接利用中心对称图形的性质结合69的特点得出答案【解答】解:现将数字“69”旋转180,得到的数字是:69故选:B例题2:(2017山东枣庄)如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE若AB的长为2,则FM的长为()A2BCD1【考点】PB:翻折变换(折叠问题)【分析】根据翻折不变性,AB=FB=2,BM=1,在RtBFM中,可利用勾股定理求出FM的值【解答】解:四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,FB=AB=2,BM=1,则在RtBM
3、F中,FM=,故选:B例题3:(2017山东枣庄)在矩形ABCD中,B的角平分线BE与AD交于点E,BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC=(结果保留根号)【考点】LB:矩形的性质;KI:等腰三角形的判定;S9:相似三角形的判定与性质【分析】先延长EF和BC,交于点G,再根据条件可以判断三角形ABE为等腰直角三角形,并求得其斜边BE的长,然后根据条件判断三角形BEG为等腰三角形,最后根据EFDGFC得出CG与DE的倍数关系,并根据BG=BC+CG进行计算即可【解答】解:延长EF和BC,交于点G矩形ABCD中,B的角平分线BE与AD交于点E,ABE=AEB=45,A
4、B=AE=9,直角三角形ABE中,BE=,又BED的角平分线EF与DC交于点F,BEG=DEFADBCG=DEFBEG=GBG=BE=由G=DEF,EFD=GFC,可得EFDGFC设CG=x,DE=2x,则AD=9+2x=BCBG=BC+CG=9+2x+x解得x=BC=9+2(3)=故答案为:例题4:(2017山东枣庄)如图,在平面直角坐标系中,已知ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,4)(1)请在图中,画出ABC向左平移6个单位长度后得到的A1B1C1; (2)以点O为位似中心,将ABC缩小为原来的,得到A2B2C2,请在图中y轴右侧,画出A2B2C2,并求出A2C
5、2B2的正弦值【考点】SD:作图位似变换;Q4:作图平移变换;T7:解直角三角形【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案【解答】解:(1)如图所示:A1B1C1,即为所求;(2)如图所示:A2B2C2,即为所求,由图形可知,A2C2B2=ACB,过点A作ADBC交BC的延长线于点D,由A(2,2),C(4,4),B(4,0),易得D(4,2),故AD=2,CD=6,AC=2,sinACB=,即sinA2C2B2=例题5:例题6:(2017甘肃张掖)如图,矩形ABCD中,AB=6,BC=4,过对角线BD
6、中点O的直线分别交AB,CD边于点E,F(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长【考点】LB:矩形的性质;L7:平行四边形的判定与性质;L8:菱形的性质【分析】(1)根据平行四边形ABCD的性质,判定BOEDOF(ASA),得出四边形BEDF的对角线互相平分,进而得出结论;(2)在RtADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长【解答】(1)证明:四边形ABCD是矩形,O是BD的中点,A=90,AD=BC=4,ABDC,OB=OD,OBE=ODF,在BOE和DOF中,BOEDOF(A
7、SA),EO=FO,四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BEEF,设BE=x,则 DE=x,AE=6x,在RtADE中,DE2=AD2+AE2,x2=42+(6x)2,解得:x=,BD=2,OB=BD=,BDEF,EO=,EF=2EO=例题7:(2017重庆B)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EFED,交AB于点F,连接DF,交AC于点G,将EFG沿EF翻折,得到EFM,连接DM,交EF于点N,若点F是AB的中点,则EMN的周长是【分析】如图1,作辅助线,构建全等三角形,根据全等三角形对应边相等证明FQ=BQ=PE=1,D
8、EF是等腰直角三角形,利用勾理计算DE=EF=,PD=3,如图2,由平行相似证明DGCFGA,列比例式可得FG和CG的长,从而得EG的长,根据GHF是等腰直角三角形,得GH和FH的长,利用DEGM证明DENMNH,则,得EN=,从而计算出EMN各边的长,相加可得周长【解答】解:如图1,过E作PQDC,交DC于P,交AB于Q,连接BE,DCAB,PQAB,四边形ABCD是正方形,ACD=45,PEC是等腰直角三角形,PE=PC,设PC=x,则PE=x,PD=4x,EQ=4x,PD=EQ,DPE=EQF=90,PED=EFQ,DPEEQF,DE=EF,易证明DECBEC,DE=BE,EF=BE,E
9、QFB,FQ=BQ=BF,AB=4,F是AB的中点,BF=2,FQ=BQ=PE=1,CE=,RtDAF中,DF=2,DE=EF,DEEF,DEF是等腰直角三角形,DE=EF=,PD=3,如图2,DCAB,DGCFGA,=2,CG=2AG,DG=2FG,FG=,AC=4,CG=,EG=,连接GM、GN,交EF于H,GFE=45,GHF是等腰直角三角形,GH=FH=,EH=EFFH=,由折叠得:GMEF,MH=GH=,EHM=DEF=90,DEHM,DENMNH,=3,EN=3NH,EN+NHEH=,EN=,NH=EHEN=,RtGNH中,GN=,由折叠得:MN=GN,EM=EG,EMN的周长=E
10、N+MN+EM=+=;故答案为:【点评】本题考查了正方形的性质、翻折变换的性质、三角形全等、相似的性质和判定、勾股定理,三角函数,计算比较复杂,作辅助线,构建全等三角形,计算出PE的长是关键例题8:(2017山东枣庄)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA,EC(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)如图2,若点P在线段AB的中点,连接AC,判断ACE的形状,并说明理由;(3)如图3,若点P在线段AB上,连接AC,当EP平分AEC时,设AB=a,BP=b,求a:b及AEC的度数【考点】LO:四边形综合
11、题【分析】(1)根据正方形的性质证明APECFE,可得结论;(2)分别证明PAE=45和BAC=45,则CAE=90,即ACE是直角三角形;(3)分别计算PG和BG的长,利用平行线分线段成比例定理列比例式得:,即,解得:a=b,得出a与b的比,再计算GH和BG的长,根据角平分线的逆定理得:HCG=BCG,由平行线的内错角得:AEC=ACB=45【解答】证明:(1)四边形ABCD和四边形BPEF是正方形,AB=BC,BP=BF,AP=CF,在APE和CFE中,APECFE,EA=EC;(2)ACE是直角三角形,理由是:如图2,P为AB的中点,PA=PB,PB=PE,PA=PE,PAE=45,又B
12、AC=45,CAE=90,即ACE是直角三角形;(3)设CE交AB于G,EP平分AEC,EPAG,AP=PG=ab,BG=a(2a2b)=2ba,PECF,即,解得:a=b,a:b=:1,作GHAC于H,CAB=45,HG=AG=(2b2b)=(2)b,又BG=2ba=(2)b,GH=GB,GHAC,GBBC,HCG=BCG,PECF,PEG=BCG,AEC=ACB=45【达标检测】一、选择题1. (2017浙江义乌)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,ACF=AFC,FAE=FEA若ACB=21,则ECD
13、的度数是()A7B21C23D24【考点】LB:矩形的性质;JA:平行线的性质【分析】由矩形的性质得出D=90,ABCD,ADBC,证出FEA=ECD,DAC=ACB=21,由三角形的外角性质得出ACF=2FEA,设ECD=x,则ACF=2x,ACD=3x,在RtACD中,由互余两角关系得出方程,解方程即可【解答】解:四边形ABCD是矩形,D=90,ABCD,ADBC,FEA=ECD,DAC=ACB=21,ACF=AFC,FAE=FEA,ACF=2FEA,设ECD=x,则ACF=2x,ACD=3x,在RtACD中,3x+21=90,解得:x=23;故选:C2. (2017甘肃张掖)下面四个手机
14、应用图标中,属于中心对称图形的是()ABCD【考点】R5:中心对称图形【分析】根据轴对称图形的概念进行判断即可【解答】解:A图形不是中心对称图形;B图形是中心对称图形;C图形不是中心对称图形;D图形不是中心对称图形,故选:B3.4.5.二、填空题:6.7.8. (2017浙江义乌)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GECD,GFBC,AD=1500m,小敏行走的路线为BAGE,小聪行走的路线为BADEF若小敏行走的路程为3100m,则小聪行走的路程为4600m【考点】LE:正方形的性质;KD:全等三角形的判定与性质;LD:矩形的判定与性质【分析】连接CG,
15、由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GEDC,易得DE=GE在矩形GECF中,EF=CG要计算小聪走的路程,只要得到小聪比小敏多走了多少就行【解答】解:连接GC,四边形ABCD为正方形,所以AD=DC,ADB=CDB=45,CDB=45,GEDC,DEG是等腰直角三角形,DE=GE在AGD和GDC中,AGDGDCAG=CG在矩形GECF中,EF=CG,EF=AGBA+AD+DE+EFBAAGGE=AD=1500m小敏共走了3100m,小聪行走的路程为3100+1500=4600(m)故答案为:46009. (2017浙江衢州)如图,矩形纸片ABCD中,AB=4,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考初中数学基础巩固复习专题九 图形的变换与四边形 中考 初中 数学 基础 巩固 复习 专题 图形 变换 四边形
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内