中考数学专题:二次函数中的四边形综合问题(原卷版).docx
《中考数学专题:二次函数中的四边形综合问题(原卷版).docx》由会员分享,可在线阅读,更多相关《中考数学专题:二次函数中的四边形综合问题(原卷版).docx(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、专题24 二次函数中的四边形综合问题1、如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BCx轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PNx轴,交直线AB于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由2、如图,已知抛物线yx2bxc与x轴交于点A
2、,B,AB2,与y轴交于点C,对称轴为直线x2(1)求抛物线的函数表达式;(2)根据图像,直接写出不等式x2bxc0的解集: (3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为: 3、如图,已知抛物线经过点和点,与轴交于点.(1)求此抛物线的解析式;(2)若点是直线下方的抛物线上一动点(不点,重合),过点作轴的平行线交直线于点,设点的横坐标为.用含的代数式表示线段的长;连接,求的面积最大时点的坐标;(3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,为轴上一点,是否存在这样的点和点,使得以点、为顶点的四边形是菱形?如果存在,请直接写出点的
3、坐标;如果不存在,请说明理由.4、如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,B点的坐标为(3,0),与y轴交于点C(0,3),点P是直线BC下方抛物线上的任意一点(1)求这个二次函数y=x2+bx+c的解析式(2)连接PO,PC,并将POC沿y轴对折,得到四边形POPC,如果四边形POPC为菱形,求点P的坐标(3)如果点P在运动过程中,能使得以P、C、B为顶点的三角形与AOC相似,请求出此时点P的坐标5、如图,在平面直角些标系中,二次函数yax2+bx的图象经过点A(1,0),C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其
4、顶点的坐标;(2)若P为y轴上的一个动点,连接PD,求PB+PD的最小值;(3)M(x,t)为抛物线对称轴上一个动点,若平面内存在点N,使得以A、B、M、N为顶点的四边形为菱形,则这样的点N共有 个6、已知,在平面直角坐标系内一直线l1:y=-x+3分别与x轴、y轴交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,y轴右侧部分抛物线上有一动点C,过点C作y轴的平行线交直线l1于点D.(1)求抛物线的函数表达式;(2)如图1,C在第一象限,求以CD为直径的E的最大面积,并判断此时E与抛物线的对称轴是否相切?若不相切,求出使得E与该抛物线对称轴相切时点C的横坐标;(3)坐标平面内是否存在点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 专题 二次 函数 中的 四边形 综合 问题 原卷版
限制150内